Car collision warning system based on RTK GPS

Milan Horemuž
School of Architecture and the Built Environment
Department of Transport and Economics
Division of Geodesy
KTH
E-mail: horemuz@kth.se

Content
- Introduction
- System description
- Test driving
- Results
- Conclusions
Introduction

- Project initiated by Swedish Road Administration
- Goal: to study feasibility of using RTK GPS as a sensor in the system that can warn the driver if the car is outside the correct lane or is heading there.
- Motivation: prevent accidents when a car drives over to the opposite lane
- Possible applications:
 - safety
 - steering of snowploughs or road painting machines
- The basic concept: to place the actual position of the car into a precise road model and to compute if the car is outside or on its way outside the correct lane.

System components

- RTK GPS receiver, RTK corrections from SWEPOS
- Following types of GPS solution are possible
 - RTK fixed solution, precision < 0.10 m
 - RTK float solution, precision < 0.50 m
 - DGPS solution, precision < 2.00 m
 - autonomous (without corrections), precision < 10 m
 - Update frequency: 1 – 20 Hz
- Antenna mounted on the roof of the car
- Road model
- Computer with software evaluates position, velocity and acceleration of the car and sets an alarm if the car is in or heading to a dangerous zone.
Software

- Reads in coordinates from GPS receiver
- Computes position, velocity, acceleration and heading of the car using Kalman filter
- Computes distance to the road edges using the computed position and the road model
- Predicts the position of the car some (3) seconds ahead (user can choose the number of seconds) and decide if the car is heading towards dangerous zone
- Dangerous zone = outside lane
Test driving

- 10 km stretch of road nr 68, 150 km west from Stockholm
- Built recently, project documentation available, including coordinates of middle line
- Surveyed by MMS Visimind, RMS 10 cm
- Distance between surveyed points 10 m, in curves 5 m.
- We drove the stretch several times with speed up to 90 km/h
- 40 minutes of driving
- 38 intentional manoeuvres

Analysis of results

- Synchronised output from software with video taken from the car
- Count
 - how many false alarms were triggered
 - how many correct alarms were triggered
 - how many times no alarm was triggered and the car was in or heading into dangerous zone
False alarms

- Total 32 false alarms triggered under 40 minutes driving
- Most of them (21) had just short duration – 0.2 s

<table>
<thead>
<tr>
<th>Duration [s]</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>21</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Duration of false alarms [s]

- 0.2: 66%
- 0.4: 13%
- 0.6: 3%
- 0.8: 3%
- 2: 6%
- 3: 6%
- 4: 3%
- >3: 0%

Why do occur false alarms?

- Autonomous GPS and bad PDOP cause most of false alarms
- PDOP (Positional Dilution of Precision) = a number that describes satellites distribution (geometry). The lower PDOP the better precision.
- “Good” PDOP < 8

Type of GPS solution at false alarm.

PDOP value at false alarm.
Limiting the number of false alarms

- Introduce weighting according to PDOP
- Trigger alarm only when it is longer than 0.2 s
- If we take away all 0.2 s long false alarms and those alarms triggered when PDOP is larger than 10, then only four false alarms are left.
- All these four alarms have duration 0.4 s and are of type “Heading into dangerous zone.”

Correct alarms

- During test driving we did different manoeuvres that should trigger alarm: overtaking and turning towards road edge
- We performed 38 manoeuvres, 6 of them did not trigger alarm (autonomous and DGPS solution)
- For 32 manoeuvres the system triggered alarm correctly
No alarm

- The car was in dangerous zone, but the system did not trigger any alarm
- This happened only with autonomous (4x) and DGPS (2x) solution
- In all cases, the system showed graphically that the car was in dangerous zone, but the position was not precise enough to trigger the alarm

Conclusions

- The system works satisfactory if RTK float or RTK fixed solution is available
- Alarm should be triggered only if its duration is longer (> 0.2 s)
- Current problems that prevent practical use of the system
 - low accuracy of existing road models
 - expensive RTK GPS receivers
 - availability of RTK correction
- Before real implementation of such system, the following issues must be addressed:
 - integrity and reliability of GPS
 - detection of sensor failures
 - form of alarm suitable for driver
 - combination with other sensors (INS, camera, odometers ...)

Example
Thank you for your attention

- Contact:

 Anders Boström, Vägverket Mitt

 Åsa Erikson, Vägverket Mitt

 Milan Horemuz, KTH

 Lars E Sjöberg, KTH