Background

- Current reclamation practices
 - Dredging – environmentally unfriendly
 - Surcharging with Prefabricated Vertical Drains – time consuming
- We need to strengthen soft marine clay in a friendly way, however
 - Compaction, deep compaction, blasting – environmentally unfriendly
 - Deep cement and lime mixing, grouting and thermal modification – costly
 - Electro-osmosis – ineffective

Objectives of this research

- To study technical feasibility of offshore vacuum preloading (under water for at least 2–3m), to see possibility of adopting existing approaches from onshore vacuum preloading (shallow water, usually 1m or less) to offshore vacuum preloading
- To study consolidation mechanism and representative stress path in vacuum preloaded clay
- Investigate new techniques for achieving the objectives above and using GPS & other technologies in monitoring ground settlement in this approach

Hong Kong has a Long History in Reclaiming Land

Major Factor to be Considered in Reclamation: Settlement of Soft Marine Mud (Clay)
Two Conventional Methods in dealing with Settlement, by:

1. Removing the Soft Marine Mud (Clay) by Dredging and replacing it by Sand Fill
2. Expelling water in the Soft Marine Mud (Clay) by Installing Vertical Wick Drains and Pre-compressing it with heavy load (Pre-consolidation Process or Surcharging)

Disadvantages of Dredging

- Adverse environmental impact to the marine ecology during the dredging process
- Adverse environment impact to the nearby residents
- Disposal of large volumes of marine mud (Diminishing of dumping ground)
- Unnecessary large consume natural resources – The more is dredged, the more is the volume of sand required for filling. The more is the sand required for filling, the more dredging is required for sand borrowing.

Mud plumes from dredging

Pre-consolidation Process or Surcharging

Cross-section of reclamation

- Surcharge
- Desired Formation Level
- General Fill
- 1.5m Thick Sand Blanket
- Geotextile
- Wick drain
- Marine Mud
- Marine Deposit
- Band Drain
- Anchor

Disadvantages of Pre-consolidation Process

- Cost of Wick Drains is high
- Construction and removal time of surcharge is more than 2 years
- Large volume of sand is required to be moved on and off site
- Possible failure if surcharge is constructed too fast
- Quality of wick drains is difficult to control

Placing of Surcharge and wait for Consolidation to complete
Set up a Project – and its principle objectives

- To investigate a practical “offshore” vacuum suction technique that could replace conventional dredging such that environmental problems related to reclamation could be completely eliminated
- To establish rational design and construction guidelines for improving the strength of soft marine clay in Hong Kong
- To demonstrate the feasibility of the technique in Hong Kong waters by conducting and monitoring large-scale field tests
- Introduce GPS in the monitoring task and compare the result against conventional manual leveling & geotechnical sensor measuring method.

Previous “Onshore” Vacuum Preloading Technique applied in Tianjin () and Qiandao () Harbor Area (shallow water)

Test Site – an area close to Shenzhen Airport

Test Site – apply vacuum suction and installed instruments

Test Site – Apply vacuum suction over water
Installation of instruments: Monitoring Program

Settlement Plate
GPS Antenna
Inclinometer
Extensometer
Piezometer
Vacuum Sensor

LEGEND
23m 22m 2.5m

Area Covered With Geomembrane

Vertical section of instrumentation installation

Settlement monitoring by conventional manual leveling

Settlement Monitoring by GPS – WHY?
- Absolute 3D coordinates measurement including height
- All weather operation
- High measurement rate – up to 20Hz is possible
- Real-time result presentation
- Synchronized measurement – provide timing for other sensors
- Good for area that is difficult to access regularly
- Can measure over long baselines
- Low maintenance and a long service life

Advanced GPS Monitoring Principle
Real-time / Post-processing is possible

Selecting the ideal GPS monitoring receiver
GMX901 vs GMX902 vs GRX1200 GG Pro

Select the GMX901 when you need:
- Lowest cost, single frequency
- 12 channels L1
- 1Hz data rate
- Post processing, short baselines (<10km)

Select the GMX902 when you need:
- Low cost, dual frequency, PPS
- 12 channels L1 + L2
- High speed (20Hz)
- Real time, long baselines

Select the GRX1200 GG Pro when you need:
- 72 channels GPS + GLONASS
- High speed (20Hz)
- Onboard logging, web interface
Leica GPS Spider v2.0 Positioning is the most flexible application software for managing GPS receivers and centrally processing all combination of baselines at high rates (up to 20Hz) with the highest accuracy in both real time and post-processing.

- The results are streamed out through serial ports, TCP-IP ports, files or to an SQL database in various formats like the well-known NMEA format for interfacing with analysis software.
- RINEX files can be generated from the real time data stream or by periodical downloading for post-processing, archive or in-depth studies of multi-path effects and other investigations.

Advanced GPS Processing with GPS Spider

- **Reference Station(s):**
 - GNSS QC
 - GeoMoS
- **Monitoring Point:**
 - Data input from NMEA GGA, GGQ and LLQ data stream, files and Spider Post Processing database
- **Data Processing:**
 - High speed (20Hz) data and graphing of data from serial and TCP/IP
- **Limit Checks and Messaging:**
 - Three levels of absolute limit checks for each of longitudinal, transverse, height, 2D and 3D displacement
 - Messaging (email, SMS, external applications)
- **Site Assessment:**
 - Quality check of raw GPS observations
 - Multipath and SNR analysis

GPS Monitoring Result Analysis

High Speed Analysis
- Data input from NMEA GGA, GGQ and LLQ data stream, files and Spider Post Processing database
- High speed (20Hz) data and graphing of data from serial and TCP/IP

Limit Checks and Messaging
- Three levels of absolute limit checks for each of longitudinal, transverse, height, 2D and 3D displacement
- Messaging (email, SMS, external applications)

Site Assessment
- Quality check of raw GPS observations
 - Multipath and SNR analysis

GPS receivers operation – overcame problem of manual leveling in inaccessible areas

Data Collection and Remote Data Transfer

- Solar Panel
- Battery
- Antenna
- Sensor Cables
- Equipment Shed
- Wireless Modem
- Datalogger

GPS Monitoring

Results: vacuum pumps

- Vacuum Pump
 - Data Collection and Remote Data Transfer
 - Solar Panel
 - Battery
 - Antenna
 - Sensor Cables
 - Equipment Shed
 - Wireless Modem
 - Datalogger

- Vacuum Pressure (kPa)
 - Dates: 10-26-06, 11-10-06, 11-25-06, 12-10-06, 12-25-06, 01-09-07, 01-24-07

- Data Collection and Remote Data Transfer
 - Wireless Modem
 - Datalogger
- Sensor Cables
- Equipment Shed
- Solar Panel
- Battery
- Antenna
Summary

- Full-scale fully instrumented field test has shown that offshore vacuum preloading is feasible.
- GPS monitoring result agreed very well with the conventional leveling measurement.
- GPS proves to be operating in all weather condition and suitable in operating in difficult access location.
- Remote wireless instrumentation and GPS provided movement measurements in inaccessible areas.

Many Thanks for Your Attention.