

	INTRODUCTION
	Three dimensional networks can be constituted also with satellite techniques (as GPS). The Cartesian coordinates $(X;Y;Z)$ and the ellipsoidal coordinates $(f, 2, h)$ of points are obtained in the WGS-84. With satellite techniques to establish and densification three dimensional networks and is more rapid, more accuracy, fewer difficult than terrestrial techniques
	National geodetic networks were being formed in order to horizontal and vertical location separately up to now. Constitution of three dimensional national networks has been begun with techniques of satellite geodesy as GPS, GLONASS observations. Thus the problem of transformations to global datum and combining geodetic networks has been appeared.
-	FIG INTERCEOP

	INTRODUCTION
	In this study a test area had been chosen for transformation problem and determination geoid. This test area is in Kadinhani region. The local geodetic network on the region of Kadinhani in Konya had been established according to national coordinate system and this network have been used up to now.
	Then for densification the geodetic points of this test network had been established in the proper distribution for using of the persons concerned. The transformation parameters and geoid undulations had been determined
-	FIG UNI International (FG Compares FIG UNI FRC 2017 2005 42:3 0. TRinsteration, Kurist Jammary

GPS and NATIONAL COORDINATE SYSTEM	
 General Command of Mapping (GCM) is the national mapping agency of Turkey. GCM is responsible for the basic geodetic control Networks. 1:25.000 and smaller scale map production. 	
 The Turkish National Datum 1954 (TND54) had been made up by GCM between 1934 1954 years as a result of intensive geodetic studies throughout the country. The Mesedag had been accepted as a datum of the Turkish National Geodetic Network and this datum adapted to European Datum 1950 (ED-50). 	
 The vertical datum had been made up according to geoid. Antalya meraograph station had been chosen origin point for vertical datum. Then orthometric height of control points had been determined on this datum. 	
FIG 1331 International (FE Compares of the Com	

GP	'S and NA	TIONAL	000	RDIN	ATE SYS	IEM	
 	mandatio		had	heer	an outles d	4.0.0	less

- The new geodetic network had been required for local and regional deformation on the national basic geodetic horizontal network which was established by the conventional techniques. So Turkish National Fundamental GPS Network (TUTGA) has been established, to provide reliable and robust geodetic network infrastructure for current and future geo-based data collection technologies (Table 1).
- TUTGA were established between 1997 and 1999 and it has been realized based on an agreement among General Directorate of Land Registry and Cadastre and General Commander of Mapping. It has been designed as four dimensional (4D). Designing concept is sufficient for all type of small scale, low resolution digital mapping and data collection applications. Datum of TUTGA is International Terrestrial Reference Frame 1996 (ITRF96) at epoch 1998.00. Therefore it is the part of global network. Which means any data collected or map produced based on TUTGA has a global meaning and is globally identified and valid (Celik et al, 2004).

		28311 International (TE Congress	
· · · ·	FIG	INTERGEO	0 1 0
	100 A 100	8-TEOrober2008 - Munich Germany	333

Datum	ITRF96
Ellipsoid	GRS80
Number of Control Stations	594
Common with National Geo. Net.	91
Common with Geodynamic Net.	53
Common with Levelling Net.	181
Common with SLR Stations.	5
Range of Control Stations	25-70 km
Density of Control Stations	1315 km2/stn

TRANS	FORMATION BE	TWEEN TWO		CE COORDIN/	ATE SYSTEM
	To fulfill the n reference frame resolved by transformation j known coordina These transfor between two re transformation Badekas, Veis Similarity Tran- Wellenhof et al,	equirements applying oarameters of tes of comm mation para ference coor models sur Model, Thk Sformation, 1997).	for transform ate system f coordinate can be comp non points a meters defin dinate syste ch as Burs omson-Krakiv Affine transf	ming data fro to another is transformatio buted when th at every two he a model m. There are sa-Wolf Molo vsky Model, formation. (Ho	m one usually n. So ere are system. relation several densky- Helmert ofmann-
J	F16 555 - 655	38311 hitsa Li 0-160mb	national EIGG NTERGEO NORMA	angreas t	0 1 0

THREE-DIMENSIONAL TRANSFORMATION MODELS

- Seven parameters are needed to describe the relation between two geodetic reference coordinate system, three translation parameters and three rotations between the coordinate axes and the scale parameter.
- When coordinate transformations between geodetic reference systems are applied, small values are expected for the rotation and the scale parameters. Thus, assuming rotation parameters of the order of a few seconds of arc, the following form of the 3D similarity transformation is often used (King. et al, 1985).

FIG SET AT S 1931 International (TECongress LINTERGEOF

8-15 Grother 2006 - Munich, Ge

o v a

U N N N N N N N N N N N N N N N N N N N	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ yy \\ zz \end{bmatrix} + (1+k) \begin{bmatrix} y \\ y \\ w \end{bmatrix}$ • The mathematical model of the Bursa-Wolf method (Hofmann-Wellenhof et al, 1997).
x/	

TW O-DIMENSIONAL TRANSFORMATION MODELS
 Two-dimensional similarity transformation expresses relationship between two system, two-dimensional coordinate system. The aim of the similarity transformation is to prevent deformation of shape. In this transformation model, the coordinate axes are perpendicular to each other in the own system and it is assumed that scale factor is same on the x axis and y axis in the own system. There is shifting, rotation and scale difference between two coordinate system as (U,V) and (X,Y).
FIG FIG LINE (ERCHES) ²⁰ SUN COM OF INSIDE STORE

THE APPLICATION
In the fundamental network, the first section GPS observations had been made on 25-26 July 2003 and the second section GPS observations had been made on 03 December 2003. In the first section, 6 dual frequency Javad receiver and JR50DVSSEY I antenna integrated into receiver had been used. In the second section, 6 dual frequency Ashtech U2-12 receiver and Marine L1-L2 antenna had been used. Approximately 2 hours static GPS observation data are recorded with the sampling rate of 10 seconds and with a 15-degree elevation cutoff.
 In the test area, GPS observations had been made on 27-29 June 2006. For GPS observations 2 dual frequency. Leica GX1230 receiver and AX1201 antenna, 2 dual frequency Leica SR9500 receiver we AT302 antenna, 2 single frequency Ashtech Promark receiver and ASH110454 antenna had been used in the fundamental network. Approximately 30 minutes rapid-static GPS observation data are recorded with the sampling rate of 5 seconds and with a 15-degree elevation cutoff.
FIG 1331 htternational (FIG Garageass IN LEX C 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

r-	THE APPLICATION
•	The GPS observations were processed and adjusted in Leica Geoffice 1.0 commercial GPS software. The adjustment had been made appropriately to BSH&MIPR by using the Cartesian coordinates of two TUTGA stations which were fixed at 2003 7068 epoch in TRF datum. After adjustment, yearly velocity vectors of points, which were graded by C1 and C2, had been estimated by interpolation method (epoch 1998.00). Then the test network which consisted of graded by C3
	stations had been adjusted at reference epoch 1998.00. The horizontal transformation from ITRF to TND54 had been made by using 2D-Helmert similarity transformation model. 22 stations were used in transformation. Root means square of transformation is ±4.3cm (table 2)
-	FIG 2011 International (FIG Chargesons LINE LEC (- 2012 Salah 47-13 Content and Content an

THE APPLICATION
- and
Topograhy of test area
FIG 13311 International (FIG Compress FIG 11), 131(743) - 0114 Eliter 42:3 0, 1820 (1924) - 0124 (1924)

Rotation origin	Y0:	430294.057 m.	12
and specare	X0:	4236263.581 m.	319
Parameter	Value	R.m.s.	Dim
Shift dy	28.141	0.0092	m
Shift dx	182.899	0.0092	m
Rotation about Z	0.892	0.3361	["]
Scale	12.095	1.6296	[pp
Max. North Errror	11.40 cm	A Film M	F
Max. East Error	9.17 cm	AT CAR	
Min. North Errror	0.09 cm	a per se a	9P
Min. East Error	0.49 cm	1 5 A L	6

	HE APPLICATION	
 The orthometric heights been carried out to dete stations. During the spii level tube and staff sho area were determined L286521. the geoid und surface fitting. The geoi given as below 	of 13 stations are known. mine orthometric heights of u l leveling, Sokkisha automat s were used. Heights of the with respect to the point lations were determined by u undulation equation comput	Spirit leveling has inknown heights of ic level, staffs with 25 points in study of L286210 and sing multiquadratic ed surface fitting is
$N - A_i + A_j T + A_j X + A_i X$	T' + 4,XT' + 4,XT + 4,X' + 4,X'T +	A. + X'Y'
Root means square of :	urface fitting is ± 2.9 cm (Tab	le 3).
 Then the stepwise met used by using height The regional geoid un method (Table 4). 	od from SKI 2.3 GPS proces ansformation to determine dulation N=36.787m was o	ssing software were orthometric heights. btained from this
	I hterational HE Congress	
	INTERGEO	

A 1 =	36.4679 m	STATION ID	V(cm)
A 2 =	-0.0000352149	L280517	-0.8
A 3 =	0.0000001517	L280518	0.6
A 4 =	-0.000000018	L280519	1.4
A 5 =	0.0000000000	L280520	-3.4
A 6 =	0.000000023	L280521	3.2
A7=	0.000000023	L28G203	-0.6
A 8 =	0.0000000000	L28G204	0.3
A 9 =	0.0000000000	L28G210	-0.1
TPE	TO TYPE	L28G211	-0.2
- 914	2128-0.0	L28G553	0
84 M	1000	L742	-2.5
100	1.1	L784	1.7
1.00	S	RS231/1	0.3

Number of common	Number of common points: 1		The state of the	100
Height parameters:	-0.00001023	0.00001105	-36.787m	1.85
Inclination of height	reference plane in	X-direction:	-0.00059 degree	84
Inclination of height	reference plane in	Y-direction:	0.00063 degree	22
Point Id	GPS [m]	orig. [m]	transf.[m]	res.[m
L280517	1181.237	1144.843	1144.782	0.06
L280518	1187.240	1150.826	1150.771	0.05
L280519	1288.083	1251.633	1251.607	0.02
L280520	1233.960	1197.433	1197.477	-0.04
L280521	1164.386	1127.908	1127.878	0.03
L28G203	1323.402	1286.867	1286.878	-0.01
L28G204	1401.703	1365.198	1365.270	-0.07
L28G210	1115.231	1078.650	1078.703	-0.05
L28G211	1074.961	1038.310	1038.279	0.03
L28G553	1070.529	1033.915	1033.926	-0.01
L742	1119.398	1082.810	1082.804	0.00
L784	1111.124	1074.584	1074.511	0.07
DESSAIA	1104.941	1068.187	1068.277	-0.09

CONCLUSIONS
 In this study, because study area is small, two dimensional transformation parameters for horizontal coordinates éasthing and northing) between ITRF-96 to IND54 was obtained. The maximum error is 11.4 cm and 9.2 cm respiectively northerly and easterly. So these parameters appropriate for the Big Scale Map and Map Information Production Regulations. These transformation parameters can be used for various cadastral plans and points, which are known coordinates in ITRF or TND54.
 The root mean square of differences between stepwise method and levelling is ±4.6 cm and between surface fitting and levelling is ±7.4 cm. According to results the stepwise method may be widely used. If a surface fitting method is used to obtain orthometric heights from ellipsoidal heights, it is necessary to have some known points in the both height systems in an almost certain density. It is also required to know the variations of geold undulation to reach the best point distribution in the surface fitting.
FIG UNITED STATES

»Thank you very much for your Sistening Email: fuatbasciftci@selcuk.edu.tr EIG EIG 4013 3331 International (FE Change UNITERCES)* 0 TEXAMORY MILLION 010