Navigation and Quality of Construction Processes

XXIII International FIG Congress

TS 48
Engineering Surveys for Construction Works II

Wolfgang Möhlenbrink, Volker Schwieger
Institute for Applications of Geodesy to Engineering
Universität Stuttgart
Germany

München, October 11th, 2006

Introduction

- Current status in construction processes:
 - frequently the surveyor delivers co-ordinates and other geometric information to the civil engineer
 - the surveyor does not participate at decisions based on his information
- Higher degree of automation leads to:
 - higher degree of safety requirements
 - more complex construction tasks
- Requirements:
 - assured quality for geometric information
 - realtime integration of geometric information into construction processes

Construction Process and Information Chain

IMAP – Principle

IMAPR – Principle / Construction Circle

Navigation & Quality of Construction Processes

Structure

- Introduction
- The Construction Circle
- Quality Model and Characteristics
- Quality Safeguarding for Construction Processes
- Conclusions and Outlook

Construction Process and Information Chain

Management of the Construction Process

Construction Process

Information:
- topography,
- development
- geo-technique based on GIS

Construction Phase

- Construction Process Control
- Management / Characteristic Circle of the Construction Phase Data

Analysis

Presentation / Visualisation

GIS

Information Management

Import / Acquisition

Management

Presentation / Visualisation
Tutorial 3: Positioning and map matching - Part 3: Positioning by multi sensor systems

Exemplary Realisation for High-Speed-Tracks

- Construction phase for high-speed slab tracks „Feste Fahrbahn“ for Köln-RheinMain (gravel is replaced by concrete)
- Surveying task: Setting out of slab tracks
- Adjustment possibility of slab tracks only within some mm

IMAPR for Slab Track Setting Out

Quality Model and Characteristics

- Quality characteristics in engineering geodesy: accuracy, reliability, sensitivity, separability.
- Current relevant quality characteristic in civil engineering: accuracy described by different tolerances.
- Proposed quality criteria on construction sites: (according to Wiltschko (2004) and various literature about automation in construction)
 - reliability (of the equipment), availability (of data or systems), completeness (of information), correctness, up-to-dateness, level-of-detail.

Lack of a complete quality model for construction processes!

Internal and External Geometry

- Internal geometry - shape of an object
- External geometry - position of an object

Additional remark: accuracy criteria demand for relationship between given tolerances and determined standard deviations: $\delta_1 = 0.2 \cdot \sigma_T$

Quality Safeguarding for Construction Processes

Quality assurance comprises
- a-priori evaluation,
- quality measurement and realtime evaluation,
- propagation of quality measures,
- realtime documentation of results and quality measures.

Safeguarding measures assure that the measured quality is in accordance with the planned quality (a-priori evaluation)!
Tutorial 3: Positioning and map matching - Part 3: Positioning by multi sensor systems

Quality Safeguarding Integrated into Construction of Slab Tracks

Quality Assurance
- safeguarding measure
 - external geometry
 - internal geometry
 - safety and reliability
- quality characteristic
 - external geometry
 - internal geometry

Construction Process Surveying Tasks
- planning of slab tracks
- construction
- fixing of slab tracks
- adjustment of slab tracks
- control network
- pre-setting out of slab track
- realtime setting out of slab track
- realtime control of slab track
- determination of tachymeter coordinates in control network
- use of metal pillars for setting out
- alignment method for setting out
- integration of construction circle for realtime control (fig. 4)
- realtime documentation of results

Acceptance Survey
- finalisation of construction

Quality Assurance
- external geometry
- internal geometry

Conclusion
- Demand for a complete quality model including inherent characteristics and parameters
- Integration of quality assurance including safeguarding measures into the construction process
- Safeguarding measures show positive effects for construction of slab tracks
- The IMAP-principle has to be upgraded by the action realisation respectively construction leading to the IMAPR-principle
- Construction phase is a construction circle following the IMAPR-principle leading to construction process control and quality driven control circles
- Participation in decisions of interdisciplinary projects like are construction processes!
- The surveyor as decision maker!

Outlook
- Navigation of construction processes by geometric information (delivered by the surveyor)
- Obtainment of required quality with as less time and cost effort as possible: “design-to-quality”-process
- Knowledge about and application of control systems and cybernetics is essential for surveyors to discuss at eye-level with civil engineers

Thank you very much for your attention!

Dr.-Ing.habil. Volker Schwieger / Prof. Dr.-Ing. Wolfgang Möhlenbrink
Institute of Applications of Geodesy to Engineering
University Stuttgart
Geschwister-Scholl-Str. 24 D
70174 Stuttgart
Phone: ++49-711-685-84064
Fax: ++49-711-685-84044
Email: volker.schwieger@iagb.uni-stuttgart.de

CONTACT