

GIS Based Prescriptive Model for Solving Optimal Land Allocation

Mohd Sanusi S. Ahamad₁ & Mohamad Yusry Abu Bakar₂

UNIVERSITI SAINS MALAYSIA

Email: 1 cesanusi@eng.usm.my, 2 myab@eng.usm.my

Commission No. 3 and 8 (TS 11H)

Introduction

GIS LAND SUITABILITY MODEL

- Measure the relative usefulness of a land unit for some given purpose.
- Typically used to locate something (landfill, new settlement, industrial sites etc.)
- Model results in potential locations being identified and assigned a relative suitability score for the activity.
- Relative suitability defined on the basis of its physical, economic, social, and environmental characteristics.
- Ability to integrate decision maker's preferences addressed as decision analysis

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

A comprehensive and critical monograph surveys techniques for GIS-based suitability model. Such techniques include:-

- Boolean overlay operations for conjunctive and disjunctive screening of feasible alternatives (Malczewski, 2004),
- Weighted Linear Combinations, and Fuzzy Sets (Eastman, et al. 1995, 2005),
- Simple Additive Weighting (Malczewski, et al. 2002),
- Ideal Point Methods (Anchen, et al. 1997),
- Concordance Analysis (Joerin et al. 2001),
- Analytical Hierarchy Processes (AHPs) (Forman and Gass, 2001, Ahamad, et al. 2008)
- Ordered Weighted Averaging (Jiang and Eastman 2000).

The drawback of GIS suitability model is inability to determine most optimal sites amongst feasible locations.

The rule in selecting the most optimal site suitability model is could be of the choice function, i.e. provisions of mathematical means of comparing alternatives involving some form of Prescriptive Model

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

PRESCRIPTIVE MODEL

The rule in selecting the optimal area in a composite suitability map could be of the choice function i.e. using mathematical means of comparing alternatives.

They involve some form of optimisation, that require the evaluation of each alternative in turn and normally tackled by mathematical programming tools outside the GIS environment.

The general problem is the search for the optimum (maximum or minimum) from a function of variables constrained by equations or inequalities called constraints.

PRESCRIPTIVE MODEL

In mathematical form, an optimization problem is viewed as finding the values for a set of decision variables in order to:

Optimize: $f(x_1, x_2, ..., x_n)$ Such that: $g(x_1, x_2, ..., x_n) \le \text{ or } = \text{ or } \ge b$ For i = 1,, m

where

- f (x₁, x₂,, x_n) is some mathematical expression involving n decision variables,
- g (x₁, x₂,, x_n) for i = 1, ..., m represent the left hand sides of the m constraints,
- and b_i for i = 1, ..., m are given fixed variables which occur on the right hand side of the m constraints.
- The condition, $x_j \ge 0$ for j = 1,...,n is usually added to the mathematical expression.

The optimal solution is values of decision variables that satisfy the constraints and for which the objective function attains a maximum (or minimum).

The optimization problems are not solved analytically but by means of explicit formula.


```
XXV International Federation of Surveyor
Congress, Kuala Lumpur, Malaysia, 16 – 2
June 2014
```


RESEARCH OBJECTIVE

- This research proposed GIS prescriptive modeling that incorporates mathematical programming techniques integrated with GIS.
- The research will attempt to formulate and solve optimal land allocation after normal GIS site suitability modelling.

MODEL IMPLEMENTATION

MODEL FORMULATION

Subject to :

$$\sum_{i=1}^{N} a_{i}x_{i} \ge a_{min}; \sum_{i=1}^{N} a_{i}x_{i} \le a_{max}$$
$$\sum_{i=1}^{N} s_{i}x_{i} \ge S; \qquad \sum_{i=1}^{N} p_{i}x_{i} \le P$$
$$\sum_{i=1}^{N} h_{i}x_{i} \le H; \quad \text{and} \quad x \in (0,1)$$

 $C_i = \sum_{i=1}^{N} c_i x_i$

- C_i the total land development cost,
- N the total number of feasible regions,
- x_i is 1 if allocate region *i*, and 0 otherwise,
- c_i the land cost of feasible region i,
- a_i the area of feasible region i,
- a_{max} maximum required area,
- a_{min} minimum required area,
- s_i the average suitability value of feasible region i,
- S the total maximum suitability value required,
- P the minimum total proximity achievable, and

H - the minimum total average height of selected regions.

- 1. The objective of equation is to MINIMISE the total land development cost of the regions allotted.
- 2. The area constraints limit the total area of regions to be allocated, the proximity and height constraints ensures that the regions selected will be nearest to transportation and lowest in heights, and the suitability constraint maximised the total average suitability value (suitability index) of the regions.
- 3. The model will identify a set of optimal feasible regions that satisfy the objective function and constraints.

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

June 2014

TEKNOLOGI MARA

UNIVERSITI SAINS MALAYSIA

MaCGDI

1				-	-			1101	ine 1117	cit i tuge	Luyout	Tormanay	Data	11001000
4	A	B	С	D	E	F		J36		• (*	f_{x}			
	Selected	Land cost	Average	Average	Average	Area		A	В	С	D	E	F	G
	Region	(RM)	suitability	height (m)	proximity	(hectares)	19	18	0	168	34	765	17	9
					(11)	L	20	19	0	172	36	448	23	11
2	1	5	176	43	364	11	21	20	0	160	125	357	50	30
	2	39	193	37	341	13	22	20	1	170	66	225	51	21
-	3	30	184	58	392	12	22	21	-	1.40	100	323	34	10
-	5	30	167	4 61	287	12	23	22	0	149	168	310	24	12
-	6	46	179	88	235	15	24	23	U	190	49	553	10	5
-	7	59	183	4	507	20	25	24	1	169	95	725	67	48
Ľ	8	14	159	82	320	28	26	25	0	195	76	884	17	9
)	9	7	170	76	842	14	27	26	0	177	20	209	22	22
L	10	7	184	61	1209	14	28	27	0	182	97	1005	23	11
2	11	24	170	24	392	48	29	28	1	183	20	311	28	28
3	12	8	168	23	167	16	30	29	0	165	88	608	15	7
4	13	11	154	27	956	21	31	30	0	163	33	138	14	7
5	14	7	151	24	889	14	32	31	0	175	47	556	11	6
5	15	13	168	67	1200	27	32	22	1	101	50	204	21	15
7	16	6	160	270	1144	12	33	32	1	181	33	294	31	15
В	17	8	166	28	440	16	34	33	U	174	36	352	10	5
9	18	9	168	34	765	17	35	34	0	192	19	180	10	10
)	19	11	172	36	448	23	36	35	1	183	18	169	26	26
-	20	30	160	125	357	50	37	36	1	193	34	210	25	12
-	21	31	170	66	325	51	38	37	0	181	33	458	19	10
5 0	22	5	149	100	550	24	39	38	0	173	35	394	15	8
+	23	48	160	43	725	67	40	39	1	175	39	164	25	13
5	25	9	195	76	884	17	41	40	1	181	29	169	14	7
7	26	22	177	20	209	22	41	40	1	100	10	250	20	20
3	27	11	182	97	1005	23	42	41	1	100	10	308	36	38
9	28	28	183	20	311	28	43	42	U	154	66	1069	13	/
)	29	7	165	88	608	15	44							
L	30	7	163	33	138	14	45	LHS Value	10	1785	396	3117	353	243
2	31	6	175	47	556	11	46							
3	32	15	181	53	X%94 Inte	rnatiðhal Fe	den497t	ion of Surv	eyors	1 700	400	0.104	350	
4	33	5	174	36	Congress	Kuala Lum	pu 48	/RHIS/Witel Luie	5 – 21	1,783	482	3,131	400	
	P Data X	Test I / Test a	Z Test 3 / A	riswer keport 1	/ Test 40% Te	st 5 7 1est 6 7	2040			-		-		_

Fre	om From vess Web	From Fro Text So	m Other	Existing	Refresh All *	Connection: Properties Edit Links	s Alt Z↓ Z↓	A MS**	EX EX	k Clear Reapp	a sc	DLV/ERData Co	nsolidate Wi	hat-If Hysis	up Subtotal	E Show Detail ∃ Hide Detail	? _{\$} Solver	
		Get Extern	al Data		Co	nnections		Sort & I	ilter			Data Tools			Outline	G.	Analysis	
	G46	•	. (9	f _x =SUN	IPRODUC	T(B2:B44,G2:	:G44)											*
4	Α	В	С	D	E	F	G	н		1	J	К	L	M	N	0	Р	
16	15	0	27	168	67	1,200	13	_		Calu	Devente			X				
17	16	0	12	160	270	1,144	6	_		Solve	er Parameter	2						
18	1/	0	16	166	28	440	8	_		Set	Target Cell:	\$G\$46		Solve				-
19	18	0	1/	168	34	/65	9	_		Equ	al To: 🥑	Max Min Value of:	0	Close				-
20	19	0	Z3 50	160	125	257	20	_		₿y	Changing Ce	ls:		Close				
21	20	1	50	170	66	225	21	_		\$8	3\$2:\$8\$44	E	Gues	s	-			
22	21	0	24	1/0	169	310	12	-		Sul	piect to the C	onstraints:		Options				
23	22	0	10	190	49	553	5	_		4	3\$2:\$8\$44 =	binary						
25	24	1	67	169	95	725	48	-		\$E	3\$2:\$B\$44 =	integer						
26	25	0	17	195	76	884	9			\$0 \$0	3\$46 = \$8\$48 C\$46 <= \$C\$	49	= <u>C</u> han	ge Recet All				
27	26	0	22	177	20	209	22			\$(er	C\$46 >= \$C\$	48	- Delet	te <u>Deser All</u>				ΤĒ
28	27	0	23	182	97	1.005	11				/\$40 /- \$0\$	10		Help				
29	28	1	28	183	20	311	28						_					
30	29	0	15	165	88	608	7			-	_		_					
31	30	0	14	163	33	138	7		Tar	get Ce	ll (Min)							
32	31	0	11	175	47	556	6				Cell	Name	iginal Val	Final Value				
33	32	1	31	181	53	294	15				\$G\$45	LHS Value Cost	C	242				
34	33	0	10	174	36	352	5											
35	34	0	10	192	19	180	10		Cor	nstrain	ts							
36	35	1	26	183	18	169	26				Cell	Name	Cell Value	e Formula				
37	36	1	25	193	34	210	12				\$B\$45	Decision	10	\$B\$45=\$B\$47				- 1
38								_										
39	37	0	19	181	33	458	10	_			\$C\$45	Area	353	\$C\$45<=\$C\$48, \$C\$4	15>=\$C\$47			
40	38	0	15	173	35	394	8	_			\$D\$45	Suitability	1,785	\$D\$45>=\$D\$47				
41	39	1	25	1/5	39	164	13	_			\$E\$45	Height	396	\$E\$45<=\$E\$47				
42	40	1	14	181	29	109	20	_			\$F\$45	Proximity	3,117	\$F\$45<=\$F\$47				
45	41	0	12	160	66	1 060	7	-										
44	42	0	15	104	00	1,009	1	-										
45	LHS Value	10	353	1 785	306	3 117	242											
40		10	555	1,705	550	5,117	242	_i										
48			350	1														+
49	RHS Value	10	400	1,783	482	3,131												
50																		+
51								XXV Inte	ma	tion	al Feder	ation of Surveyors						
52								Congress	, Kι	uala	Lumpui	; Malaysia, 16 – 21						
53	N. NI /T		+ 2 /T++	2 /T++ 4	Tert	(T-+ C / T		T. + 0 / T.	- 0	/	lune 20	14						× 1

RESULTS OF ZERO-ONE INTEGER PROGRAMMING MODEL (MS EXCEL Solver)

Home	Insert	Page Layout	Formulas	Data	Review	View	Acrobat				
L21	- (*	f _x									
В	С	D	E	F	G	Н	I	J	К	L	M
Test	Ss	uitability	SH	leight	SPr	oximity	SA	rea	SCost		10 selected Regions
	Setting	Result	Setting	Result	Setting	Result	Setting	Result			
1	≤1885	1729	≥174	694	≥1935	5048	350 - 400	350	198		8,15,19,20,21,24,27,32,36,39
2	≥1730	1734	≤693	605	≤5047	4962	350 - 400	350	198		9,11,15,19,20,21,24,32,36,40
3	≥1735	1744	≤694	575	≤4961	4387	350 - 400	350	199		11, 12, 15, 20, 21, 23, 24, 32, 36, 39
4	≥1745	1747	≤574	548	≤4386	3737	350 - 400	350	199		1,11,19,20,21,24,32,36,37,39
5	≥1748	1752	≤547	534	≤3736	3542	350 - 400	353	201		11,19,20,21,24,32,36,37,39,40
6	≥1753	1757	≤533	518	≤3541	3303	350 - 400	352	212		11,20,21,24,26,32,36,37,39,40
7	≥1758	1763	≤517	516	≤3302	3263	350 - 400	356	216		11,20,21,24,32,35,36,37,39,40
8	≥1764	1764	≤515	486	≤3262	3177	350 - 400	350	223		11, 12, 20, 21, 24, 32, 34, 36, 40, 41
9	≥1765	1782	≤485	483	≤3176	3132	350 - 400	350	231		11, 20, 21, 24, 28, 32, 34, 35, 36, 40
10	≥1783	1785	≤482	396	≤3131	3117	350 - 400	353	242		11, 21, 24, 28, 32, 35, 36, 39, 40, 41
11	≥1786	1786	≤395	395	≤3116	3116	350 - 400	350	239		11, 21, 24, 28, 32, 35, 36, 39, 40, 41
12	≥1786	1786	≥395	487	≤3116	3093	350 - 400	351	251		20, 21, 24, 28, 32, 34, 35, 36, 39, 41
13	≤1786	1772	≤395	390	≤3116	3115	350 - 400	355	243		11, 12, 21, 24, 28, 32, 35, 36, 39, 41
14	≥1786	1787	≤395	377	≥3116	3162	350 - 400	350	251		11, 21, 24, 26, 28, 32, 35, 36, 40, 41

Mixed Integer Branch And Bound Algorithm in turbo C++ contributed by Eindhoven University of Technology, Netherlands (Notebaert, and Eikland, 2008).

Test	Σ Suita	ability	ΣΗ	eight	ΣDis	tance	ΣΑ	rea	10 Selected	Σ Cost
	Setting	Result	Setting	Result	Setting	Result	Setting	Result	Regions	
1	≤ 1885	1729	≥174	694	≥1935	5048	350-400	350	8, 15, 19, 20, 21,	198
									24, 27, 32, 36, 39	
2	≥ 1730	1731	≤ 693	581	≤ 5047	4363	350-400	350	11, 12, 17, 19, 20,	198
									21, 24, 27, 32, 36	
3	≥1732	1747	≤ 580	548	≤ 4362	3737	350-400	350	1, 11, 19, 20, 21,	199
									24, 32, 36, 37, 39	
4	≥ 1748	1752	≤ 547	534	≤ 3736	3542	350-400	353	11, 19, 20, 21, 24,	201
									32, 36, 37, 39, 40	
5	≥1753	1757	≤ 533	518	≤ 3541	3303	350-400	352	11, 20, 21, 24, 26,	212
									32, 36, 37, 39, 40	
6	≥ 1758	1763	≤ 517	516	≤ 3302	3263	350-400	356	11, 20, 21, 24, 32,	216
									35, 36, 37, 39, 40	
7	≥ 1764	1764	≤ 515	486	≤ 3262	3177	350-400	350	11, 12, 20, 21, 24,	223
									32, 34, 36, 40, 41	
8	≥1765	1782	≤ 485	483	≤ 3176	3132	350-400	350	11, 20, 21, 24, 28,	231
									32, 34, 35, 36, 40	
9*	≥1783	1785*	≤ 482	396*	≤ 3131	3117*	350-400	353*	11, 21, 24, 28, 32,	242*
									35, 36, 39, 40, 41	
10	≥1786	1786	≥ 395	487	≤ 3116	3093	350-400	351	20, 21, 24, 28, 32,	251
									34, 35, 36, 39, 41	
11	≤ 1786	1772	≤ 395	390	≤ 3116	3115	350-400	355	11, 12, 21, 24, 28,	243
									32, 35, 36, 39, 41	
12	≥1786	1787	≤ 395	377	≥ 3116	3162	350-400	350	11, 21, 24, 26, 28,	251
									32, 35, 36, 40, 41	

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

50

UNIVERSITI SAINS MALAYSIA

ATTRIBUTES OF 10 MOST OPTIMAL REGIONS

Region	Suitability	Heights (m)	Proximity (m)	Area (Hect.)	Land Cost (* 10 th Thousand)
11	170	24	392	48	24
21	170	66	325	51	31
24	169	95	725	67	48
28	183	20	311	28	28
32	181	53	294	31	15
35	183	18	169	26	26
36	193	34	210	25	12
39	175	39	164	25	13
40	181	29	169	14	7
41	180	18	358	38	38
Total	1785	396	3117	353	242

SENSITIVITY OF PRESCRIPTIVE MODEL

Sensitivity Tests on

- The effect of changes in the right-hand side value on certain constraints
- The effect of changes in the coefficients of the objective function
- The effect of changes in the coefficients of certain constraints values
- The effect when the constraints are reduced from the original problem

Condition			Area						Selec	ted re	gions				
Ten optimal regions			242	11	21	24	-	28	-	32	35	36	39	40	41
Unspecified region			242	11	21	24	-	28	-	32	35	36	39	40	41
Reduced constraint			118	-	-	-	26	-	30	-	35	36	39	-	41
Objective Function		Optimum Regions													
Cost	11			21	24		28	3	32	35	36	39	Δ	10	41
Suitability 11 12			21	24	26	28	3	32		36	39			41	
Proximity	11		19	21	24		28	3	32		36	39	Δ	10	41
Similarities	11			21	24		28	8	32		36	39			41

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

CONCLUSION

- Prescriptive model is capable of producing optimal feasible regions based on the objectives and constraints initially set in the allocation problem.
- The model is not sensitive to the number of constraint condition imposed on the problem but is sensitive to the changes made on the constraints indicating the importance of choosing a correct value for the constraints.
- Prescriptive model can be integrated with GIS suitability model [loose coupling] in finding the optimal solution for a spatial site selection problem

Acknowledgment

- Financial assistance from Malaysian Land Surveyors Board (LJT).
- Universiti Sains Malaysia USM RU-Grant (2013-15) –1001/PAWAM/814219

XXV International Federation of Surveyor 🔛 🕅 🗰 📰 📰 👘

Thank you for your attention!

FIG 2014 Congress, 16 21 June, Kuala Lumpur

Assoc. Prof. Sr. Dr. Mohd Sanusi S. Ahamad

₂Mohamad Yusry Abu Bakar

School of Civil Engineering

Engineering Campus

Universiti Sains Malaysia

14300 Nibong Tebal, Pulau Pinang

Tel. +6019-4766202

Fax +604-5941037

Email:₁.<u>cesanusi@eng.usm.my</u>, ₂. <u>myab@eng.usm.my</u> Web site: http://civil.eng.usm.my/v2/

XXV International Federation of Surveyor Congress, Kuala Lumpur, Malaysia, 16 – 2 June 2014

