Trimble LaserAce 1000 Accuracy Evaluation for Indoor Data Acquisition

Ali Jamali, Pawel Boguslawski, C.M. Gold, Malaysia
Francois Anton, Denmark

3D GIS Research Lab, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia (UTM), Malaysia

ali.jamali.65@gmail.com

Commission 6

Content

• Introduction
• Objectives
• Rapid surveying method
• Surveying equipment
 I. Rangefinder (Trimble LaserAce 1000)
 II. Total station (Leica 307 TCR)
 III. Laser scanner (Leica C10)
• Results
• Conclusions
Introduction

- Indoor surveying has become an important factor in many different applications but a lack of standards is feeling and there are more challenges encountered in this field (Deak et al., 2012). According to Donath and Thurow (2007), considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of building survey.

- In a surveying project, data acquisition, processing and modelling will be done separately which is time consuming and costly. This research is an attempt to overcome all procedures of surveying at once. Time and accuracy were considered as two important factors presented by this paper.
Objectives

- To investigate a new method of indoor surveying using a rangefinder:
 - cheap
 - less time consuming than other methods (laser scanning, Total Station)
 - comparable/reasonable precision
- To compare models reconstructed from data collected using ‘well-known methods’ (laser scanner and total station)

Rapid surveying method

Laser scanner
- a point cloud needs to be processed to obtain a 3D model
- time consuming, but detailed and precise
- expensive equipment

Total Station
- x, y, z coordinates of points
- precise measurements
Rapid surveying method

Range finder

• Advantages
 – handy
 – relatively cheap
 – rapid measurements
 – x, y, z coordinates

• Disadvantages
 – not as precise as the laser scanner or Total Station

User interface for 3D model construction on-site

Adjacency relationship detected automatically

Overlapping detection

Hidden corner estimation
Rapid surveying method

Useful when a simple geometrical model is required
I. for building management, inventorying, etc.
II. emergency simulations

Useful when many rooms have to be quickly measured
I. buildings without architectural plans
II. to compare the plans with as-build situation

Range Finder

Data Collection → PC-Range Finder Connection via Bluetooth → 3D Data Processing

3D Data Modelling
Range Finder (Data processing)

Coordinates measured by rangefinder is not as precise as laser scanner or total station measurement.

- Connection between PC and Range Finder by clicking the trigger (Fire Button) via Bluetooth
- Coordinates calculation (X Y Z) in PC
Rapid surveying method
(result)

3D model calibrated and reconstructed based on the least square adjustment. (Trimble LaserAce 1000 (White) and Leica 307 TCR (Black))

Rapid surveying method
(result)

3D model calibrated and reconstructed based on the least square adjustment. (Trimble LaserAce 1000 (White) and Leica scanstation C10 (Black))
Rapid surveying method (result)

<table>
<thead>
<tr>
<th>Surveying Equipments</th>
<th>Total Station (Leica 307 TCR)</th>
<th>Laser Scanner (Leica C10)</th>
<th>Range Finder (LaserAce 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area</td>
<td>265.9 m²</td>
<td>267.7 m²</td>
<td>269.8 m²</td>
</tr>
</tbody>
</table>

![Surface Area Chart]

Rapid surveying method (result)

<table>
<thead>
<tr>
<th>Surveying Equipments</th>
<th>Total Station (Leica 307 TCR)</th>
<th>Laser Scanner (Leica C10)</th>
<th>Range Finder (LaserAce 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>30 Min</td>
<td>150 Min</td>
<td>10 Min</td>
</tr>
</tbody>
</table>

![Time Chart]
Rapid surveying method (result)

<table>
<thead>
<tr>
<th>Surveying Equipments</th>
<th>Total Station (Leica 307 TCR)</th>
<th>Laser Scanner (Leica C10)</th>
<th>Range Finder (LaserAce 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>+7,000</td>
<td>+100,000</td>
<td>2600</td>
</tr>
</tbody>
</table>

Conclusion

- This research has been done to investigate a technique of rapid indoor surveying and its accuracy in an indoor environment. The main objective of this research is to propose a methodology for data capturing and 3D modelling simultaneously.
- This research showed that reconstruction of 3D building model based on the geometry using Trimble LaserAce 1000 is inadequate and topology needs to be considered. The authors of this paper intend to investigate model reconstruction algorithms in the near future based on the geometry and topology modelling.
Acknowledgement

- Financial assistance from Malaysian Peninsula Land Surveyors Board (LJT).
- A special thanks to Prof. Dr. Alias Abdul Rahman

Thank you for your attention

3D GIS Research Lab, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia (UTM), Malaysia

ali.jamali.65@gmail.com
Tel: +060142630471