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Main Objective 
Development of a fit-for-purpose technical framework for the 

implementation of 3D crowdsourced cadastral surveys everywhere, 

including even regions that still lack a 2D cadastral data registration 

 Current research trends:

 Low-cost equipment

In
d

o
o

r 
P

o
si

ti
o

n
in

g
 

S
ys

te
m

 (
IP

S
)

Minimize cost, time and prerequisites of the required surveys

 Crowdsourcing techniques

 Machine learning techniques

 Automated procedures

 Mobile services (m-services) & web services

 Open-source software (OSS)

 Standardized international data models, such as 

Land Administration Domain Model (LADM)

3D Indoor Cadastre

Absence of accurate 
registration basemap

 Informal 

constructions

 Self-made cities

 Old-constructions

 etc.



3D Cadastre - Current Research

 LADM-based 3D Cadastres (LADM ISO 19152) 

Flexible conceptual schema for 2D/3D Cadastres – based on a Model Driven Architecture (MDA)

 3D Indoor Cadastral Recording

 2D architectural plans 

 GPS sensor - smartphone’s GPS

 GNSS receiver device - Trimble R2GPS GNSS / EOS Arrow Gold RTK GNSS

Weak Indoor Positioning Accuracy

Best fitted Solution

Indoor positioning System 
(IPS)

Limited availability 

 Linking LADM with physical models

Application schemas & Technical models (CityGML, IndoorGML, BIM/IFC, LandXML etc.)

 2D/3D Crowdsourcing cadastral surveys 

Minimize cost and time of the required surveys



Indoor Position Systems (IPS) - Current Research 

 Technologies – Bluetooth, ZigBee, Wi-Fi  

 Techniques – Fingerprinting, Lateration, Dead Reckoning

 Measurements – Received Signal Strength Indicator (RSSI)

 Relatively high 

accuracy

 Low cost

 Low Hardware 

Requirements

 Easy integration

 Low power 

consumption

Low-cost 

Location-based 

Applications 

 Machine Learning Methods 

k-Nearest Neighbors (KNN), Neural Networks and 

Support Vector Machines (SVM) etc. 

Modelling Position Data

Accuracy improvement



Proposed 3D Indoor Crowdsourced Cadastral Mapping – System Architecture

Bluetooth beacons
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The Sensing Infrastructure

 Bluetooth Beacons 

UHF 2.402 to 2.480 GHz

 Technology

 Spatial correlation 

 Beacons assignment with physical coordinates

 Received Signal Strength Indicator (RSSI)

 multiple Bluetooth signals 

position error minimization ~ cm accuracy 

 Main modality
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The Deep Learning Framework for Coordinate Estimation

 N available Bluetooth sensors

 Space position estimates:    𝒚𝑐 = 𝑓 𝑋(𝑡𝑖) (1)
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 Long Short Term Memory (LSTM) Network 

𝒔𝒄(𝑝𝑖) = 𝐮𝑗(𝑡)
𝑇 ∙ 𝐯𝑗 , j = 1,2,… 𝐾 (2)

𝐮𝑗(𝑡) =

𝑢𝑗,1(𝑡)

⋮
𝑢𝑗 ,𝐿 (𝑡)

=

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐰𝑗,1
𝑇 ∙ 𝒙(𝑡))

⋮
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐰𝑗,𝐿

𝑇 ∙ 𝒙(𝑡))
(3)

𝒖𝒊 𝑛𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐰𝑖
T ∙ 𝒙 𝑡 +  𝐫𝑖

T ∙ 𝐮 𝑡 − 1 +  𝐫𝑖
T ∙ 𝐮(𝑡 + 1)) (4)

 Bayesian Optimization - best parameters selection & error E minimization

L: hidden Neurons

 Distortion of signals: 𝑿𝒊 𝑡 , 𝑖 = 1,2, …𝑁



Practical Experiment (1/3)

 Test Area

 1st Floor of SRSG, NTUA 

 total area: ~100m
2
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 Dataset

 geodetic coordinates (X,Y) of 49 points in Greek Grid

B

 4 Raspberry Pi Bluetooth devices 

 A smartphone, with Bluetooth capabilities  

 Technical equipment

 4 deployment stations for the Raspberry Pi 

 45 points:a) the RSSI measurements, 

b) the device ID and, 

c) the signal transmitting time 

1 min per point 

100 measurements / point



Practical Experiment (2/3)

 Software & Hardware tools
 Python 3.6 

 Keras 2.4.3

 Tensorflow 2.3.0

 Intel® Core™ i5 -7200U CPU (2.50 GHz) with 

Radeon ™ R5 M430

 LSTM Classifier 

 input and output layers

 2 LSTM Layers 

 Sigmoid activation function

 Training & Testing Scenarios 

 1st Scenario: RAS1, RAS2, RAS3 and RAS4

 Dataset:  20% - Testing
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 80% - Training

 2nd Scenario: RAS1, RAS2 and RAS3



Practical Experiment (3/3)

 Duration ~ 4hr

 Training

 Position Estimation < 1 sec

 Average estimation accuracy ~15.2cm 

 Testing

 Metrics

 Accuracy Precision Recall F1-score 

Scenario 1 83.47 % 87.63% 82.88% 85.19% 

Scenario 2 68.72% 72.14% 68.23% 70.13% 
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Conclusions

 Machine Learning Techniques

LSTM network with optimised hyperparameters - accurate Indoor Localisation

 Bluetooth technology 

relatively low-cost & portable with small dimensions ~ cm 

 3D Crowdsourcing Techniques - Citizens’ participation – errors minimization 

 Cost effective and time consuming solution / automation

usage of modern low-cost IT tools, m-services

Innovative approach - 3D Indoor Cadastral Surveys

Fit for Purpose 3D Cadastre 

 Plan / Map availability

 GPS / GNSS 

Indoor weaknesses 

Overcoming difficulties:



Future Work

 Integration between the developed indoor positioning system and a cadastral mobile application able to automatically 

provide the 3D model of the property unit

 Adoption of more complex deep machine learning architectures multi-channel recurrent neural networks

 processing simultaneously signals from heterogeneous sensors (e.g., Bluetooth and WiFi signals, Channel State 

Information of WiFi signals)

 Accuracy incensement 

 reduce granularity of the targets positions labels

 Model training from multiple buildings

 Development of a fitted framework for furnished places

limited physical access to the borders of the room
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