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ABSTRACT 

As key transportation infrastructure assets, long-span bridges are critical to regional cooperation and 
economic and social development of a country. An increase in usage and demand as well as extreme weather 
events are posing constant threats to these structures. An installation of Structural Health Monitoring (SHM) 
systems on long-span bridges are a mandatory practice in many countries to ensure their safety and 
serviceability. However, the diagnosis and prognosis of the reliability and damage of these structures are 
challenged by the sensitivity of structural performances and monitoring parameters to environmental and 
operational conditions. Separating effects induced by wind, temperature and traffic is therefore one of the 
primary objectives of the GeoSHM Demonstration Project. Funded by the European Space Agency (ESA), the aim 
of this project is to deliver a smart SHM data strategy to evaluate the structural health status of long-span bridges 
and aid bridge operators in their decision making process. Recent outcomes of this project on the one of the 
three tests structures – the Forth Road Bridge in Scotland, UK – will be discussed in this paper.  

 

I. INTRODUCTION 

Long-span bridges are often among the key 
transportation infrastructure assets of a country, 
stimulating regional cooperation and economic and 
social development. The inevitable aging process and 
the accumulation of damage resulting from wind, traffic 
and the surrounding environment can adversely affect 
their performance. Without proper monitoring, 
maintenance and warning, the closure or collapse of 
these bridges is possible. This can lead to significant 
economic and societal impacts and, in some cases, 
heavy casualties as seen with the incident of the 
Seongsu Bridge in Seoul in 1998 (Failure Knowledge 
Database), the I-35W highway bridge in Minnesota in 
2007 (Liao and Okazaki, 2009), the newly installed 
pedestrian bridge at Florida International University in 
Miami in 2018 (Miami Herald) or more recently, the 
Morandi Bridge in Genoa in 2018 (The Guardian). 
Therefore, Structural Health Monitoring (SHM) is vital 
to ensure the safety and serviceability of these 
structures, reducing the risk of malfunction due to 
extreme loading and long-term degradation.  

Various SHM systems of civil engineering 
infrastructure have been developed significantly in 
recent years thanks to the evolution of sensing and 
communication technologies as well as data processing 
methodologies, including the applications of machine 
learning and pattern recognition. However, the very 
characteristics of long-span bridges have posed many 
challenges to the successful delivery of a SHM 
framework. One of the greatest obstacles is that both 
the response and modal frequencies of long-span 
bridges are highly sensitive to environmental and 
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operational conditions, which can mask the changes in 
structural characteristics caused by damages (Cross et 
al., 2013; Meng et al., 2018; Chen et al., 2018). 
Moreover, this challenge can be exacerbated by the 
presence of outliers in monitoring data due to technical 
issues and errors during data processing and storage 
(Dervilis et al., 2015). 

Funded by the European Space Agency (ESA), the 
project “GNSS and Earth Observation for Structural 
Health Monitoring of Long-span Bridges” or GeoSHM 
was initiated in August 2013. Following the success of 
the 1.5 year Feasibility Study, this project was extended 
to the GeoSHM Demonstration project (ESA Website). 
The Forth Road Bridge (FRB) in Scotland  is one of the 
test structures, together with two other long-span 
bridges in China. The aim of the GeoSHM 
Demonstration Project is to develop (i) an integrated 
sensor system featuring the use of the Global 
Navigation and Satellite Systems (GNSS) and the state-
of-the-art Earth Observation (EO) technologies to 
monitor long-span bridges and (ii) an innovate GeoSHM 
data strategy to evaluate the structural health status of 
bridges and aid bridge operators in their decision 
making process. Separating the effects induced by 
wind, temperature and traffic is among the primary 
objectives in order to successfully deliver Point (ii).  

The work presented in this paper focuses on 
discussing the current progress of the GeoSHM project 
on the FRB. The monitoring data in 2015 and 2016 will 
be exploited to uncover the strong dependence of the 
bridge response on environmental and operational 
conditions and the needs of separating temperature 
and traffic effects to facilitate further analysis. Artificial 
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Neural Network (ANN)-based regression models are 
created to quantify these relationships and offer a 
means to decouple wind-induced effects from 
environmental and operational influences. Some 
outcomes of this analysis will be presented and 
discussed here, which lays a foundation to accomplish 
the ultimate objective of the GeoSHM project. 

 

II. STRUCTURAL HEALTH MONITORING OF THE FRB 

A. Overview of the FRB 

The FRB is the major suspension bridge across the 
Firth of Forth, linking Edinburgh to Northern Scotland 
(Figure 1a). When opened in 1964, this 2.5km long 
bridge was the fourth longest suspension bridge in the 
world and the longest outside the United States of 
America. The 1,006m long main span of the FRB is 
suspended from two main cables aerially spun between 
two 150m high main towers; each side span is 408m 
long. The suspended structure is made of steel trusses 
and features three longitudinal air gaps, one between 
each footway and carriageway and one between the 
two carriage ways. This perforated structure gives the 
FRB a strong aerodynamic stability.  

The main span and two side spans are connected to 
the main towers by pairs of truss end links, which are 
considered to be one of the critical elements of the FRB. 
In December 2015, a fracture on one of the North East 
truss end links connecting the main span to the North 
tower was detected (Figure 1b). This was followed by 
further inspections and an approximately one-month 
closure of the bridge to carry out a temporary fix. Later 
in February 2016, the FRB was re-open to all traffic. A 
plan to prevent similar failures in the future has been 
proposed and eventually was implemented in February 
2017.  

On account of the steel trusses and three longitudinal 
air gaps, the FRB is not prone to vortex-induced 
vibration or flutter but is prone to buffeting due to 
turbulent wind. On some occasions, such as in January 
2015, strong winds caused the mid span of the FRB to 
move laterally by a distance of 2m away from the 
normal position superimposed by a 3m peak-to-peak 
oscillation. Such movements led to the closure of the 
FRB to ensure the safety of public. 

 
B. Description of the GeoSHM sensor system 

Figure 2 describes the current status of the GeoSHM 
sensor system installed on the FRB. Three pairs of GNSS 
receivers are installed along the main span; one is at the 
mid span while the other two are at the navigation 
points. There are two other GNSS receivers located at 
the top of the North-East and South-West tower legs to 
monitor deformation of the main tower. In addition, the 
wind measurement is facilitated by using three 
WindMaster 3D sonic anemometers placed at the mid 
span and at the top of the two main towers. Other 
environmental conditions are determined by the 
meteorological station installed at the mid span. The 

other key component of the GeoSHM sensor system is 
the use of the interferometric synthetic-aperture radar 
(InSAR) images from the Sentinel-1 satellites, which 
offer the remote long-term subsidence measurement 
of the bridge site and its surrounding areas. In the next 
phase, eight tri-axial Sherborne accelerometers will be 
installed at a number positions on the main span and 
main cables to complement GNSS measurements. 
Further accelerometers are installed on the top of the 
main towers together with uniaxial inclinometers to 
measure the inclination of the towers. 

The overview of the GeoSHM system architecture is 
summarised in Figure 3. Data of the GeoSHM sensor 
system is collected at predefined sampling frequencies 
and transferred to the main GeoSHM servers located at 
University of Nottingham for processing and storage. 
10-minute average statistics and modal frequencies are 
calculated and analysed; they are featured in real-time 
monitoring and, more importantly, to evaluate the 
structural health status (Meng et al., 2019). In the next 
section, some of the selected monitoring parameters 
will be introduced and further analysed to reveal some 
features of the baseline performance of the FRB 
including the strong influence of temperature and 
traffic. 

 
C. Influence of temperature and traffic on the 

performance of the FRB 

Effects of temperature and traffic on the FRB are 
analysed by investigating the 10-minute mean and 
standard deviation of the bridge response measured at 
the mid span as well as natural frequencies of the first 
lateral and heaving modes. Here, the lateral (along the 
y-axis) and heaving (along the z-axis) responses are 
considered. A two week period of normal operation of 
the FRB (from 01 to 15/08/2018) is shown in Figure 4 
and Figure 5 as an example. It is clear that effects of 
temperature and traffic are more visible on the heaving 
response of the mid span compared to the lateral 
response. A diurnal pattern can be observed where the 
10-min standard deviation of the heaving responses 
during the daytime is higher than that during the night-
time (Figure 5b). An increase in traffic occurs around 
06:00 and leads to large dynamic responses; after 
15:00, less traffic is on the FRB, causing a gradual drop 
of dynamic responses. This traffic-induced pattern can 
also be seen on the 10-minute mean of the heaving 
response (Figure 5a) where the sagging of the mid span 
is larger during the daytime due to an increase in traffic. 
However, natural fluctuations of the temperature make 
this pattern less visible. In addition, this diurnal pattern 
is observed on the 10-minute natural frequencies of the 
first lateral and heaving modes (Figure 6). During a day, 
an increase in the air temperature and additional mass 
due to traffic cause these frequencies to reduce by 7% 
and 2% respectively. Since there is less traffic present 
on the bridge at weekends, these aforementioned 
patterns are less pronounced.  
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The 10-minute mean and standard deviations of the 
lateral response are largely influenced by wind; 
therefore data appear to be more random and no clear 
short- and long-term trends are visible (Error! 
Reference source not found.). Using the monitoring 
data in 2015 and 2016, quadratic relationships between 
the lateral response and the normal component of the 
mean wind speed are clearly shown in Figure 7. Similar 
plots are produced for the heaving response (Figure 
8Error! Reference source not found.); however, no 
clear relationship can be concluded. This is due to the 
strong influences of temperature and traffic as 
discussed earlier, which significantly masks the effects 
of wind on the heaving response, particularly at wind 
speeds below 15ms-1. Therefore, it is important to 
develop a method to remove effects of temperature 
and traffic to understand wind-induced responses and 
diagnose the structural performance of the FRB. 

(a) 

 
(b) 

 
Figure 1. (a) The FRB (Scotland, UK); (b) Fractured North 

East truss end links (www.newcivilengineer.com) 

 

 

 
Figure 2. GeoSHM sensor system on the FRB (highlighted 

sensors will be installed in the next phase). 

 
Figure 3. Overview of the GeoSHM system architecture. 

 
(a) 

 
(b)

 
Figure 4. 10 minute (a) mean and (b) standard deviation of 

the lateral response (from 01 to 15/08/2016). 

 
(a) 

 
(b) 

 
Figure 5. 10 minute (a) mean and (b) standard deviation of 

the lateral response (from 01 to 15/08/2018). 

Integrated 
Receiver 

http://www.newcivilengineer.com/
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(a) 

 
(b) 

 
Figure 6. Estimates of 10-minute natural frequencies of the 

first (a) lateral and (b) heaving modes (from 01 to 
15/08/2016). 

(a) 

 
(b) 

 
Figure 7. Variability of the 10-minute (a) mean and (b) 

standard deviation of the lateral response against the normal 
component of the 10-minute mean wind speed. 

 

III. ANN-BASED REGRESSION MODEL 

A. Description of the model 

ANNs have been successfully implemented in many 
fields including pattern recognition, machine learning 
and civil engineering (Bishop, 1996). In the area of SHM, 
ANNs are one of the most common methods to study 
the relationship between the response and natural 
frequencies of bridges and environmental factors 
(Ni et al., 2009; Laory et al., 2014). In this work, ANNs 
are employed to generate a non-linear regression 

model to estimate time-dependent lateral and heaving 
responses with respect to variation of wind, 
temperature, and traffic. Inputs and outputs of the 
regression model are 10-minute average statistics and 
are described in Figure 9. It should be noticed that the 
time information is used to model traffic data. 

Using the Neural Network toolbox of MATLAB, the 
two-layer feed-forward ANN is implemented and 
trained by using the monitoring data in 2015 and 2016. 
The training process aims to iteratively evaluate ANN 
parameters; this is accomplished if the sum-of-square 

error 𝑬 = ∑ [𝒚𝒊 − 𝒇𝑨𝑵𝑵(𝒙𝒊)]
𝟐𝑵

𝒊=𝟏  between actual data yi 
and ANN estimates fANN(xi) using input xi reaches a 
minimum value (N is the number of data points used in 
the training process). The residual, i.e. the difference 
between the actual data and ANN estimates is used to 
assess errors of the regression model, which will be 
discussed in Section III.B. 

 
(a) 

 
(b) 

 
Figure 8. Variability of the 10-minute (a) mean and (b) 
standard deviation of the heaving response against the 
normal component of the 10-minute mean wind speed. 

 

 
Figure 9. Description of inputs and outputs of ANN-based 

regression model. 

  Time (in one date)
  Day (in one week)
  Date (in one month)
  Month (in one year)

  Temperature

  Normal component of wind speed
  Gust wind speed

Traffic data

Mean of lateral response
STD of lateral response
Mean of heaving response
STD of heaving response

Output

ANN

Input
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B. Validation study 

Taking a two-week period of normal operation of the 
FRB (from 01 to 15/08/2016) as an example, Figure 10 
and Figure 11 compare estimates obtained from the 
ANN-based regression model to the actual 10-minute 
average statistics of the bridge response. In addition, 
upper and lower bounds are included, which represents 
the 95% confidence limits of the ANN estimates based 
on a normal distribution. This approach to quantify 
errors associated with the ANN estimates was 
reasonable since residuals between the actual data and 
ANN estimates were found to closely follow the normal 
distribution. An example of the residual of the standard 

deviation of the heaving response x is shown in Figure 
12. 

In general, the estimates produced by the ANN-based 
regression model are in a good agreement with the 
actual data. As shown in Figure 10, the regression 
model is capable of reproducing the trends and 
patterns in the lateral response. This includes the event 
occurring on 07/08/2016 when, under effects of strong 
wind, the lateral movement of the mid span was larger 
compared to other days in this period. More 
importantly, this regression model also successfully 
models the diurnal patterns observed in the heaving 
response. Differences between the bridge response on 
weekdays and at weekends are also captured by the 
ANN estimates (Figure 11).  

It should be noticed that, in Figure 10 and Figure 11, 
most of the actual data points lie within the 95% 
confidence limits of the ANN estimates, except to 
07/08/2016 when the model underestimates the wind-
induced lateral response. Nevertheless, together with 
an ability to reproduce the trends and diurnal patterns 
in the bridge response, this error behaviour shows the 
validity of the ANN-based regression model and that it 
can be used for further studies. 
 

(a) 

 
(b) 

 
Figure 10. Results of the ANN-based regression models on 

estimating the 10-minute (a) mean and (b) standard 
deviation of the lateral response (from 01 to 15/08/2016). 

 

 

 

 

 
(a) 

 
(b) 

 
Figure 11. Results of the ANN-based regression model on 

estimating the 10-minute (a) mean and (b) standard 
deviation of the heaving response (from 01 to 15/08/2016). 

 
Figure 12. An example of the probability distribution of ANN 

residuals. 

 

C. Application of the model 

In this section, the usability of the ANN-based 
regression model generated in Section III.B is 
investigated in terms of separating traffic-induced 
effects from the bridge response. The 10-minute mean 
of the lateral response and the 10-minute standard 
deviation of the heaving response are considered in this 
study.  

Figure 13 shows a comparison between the actual 
wind-induced response and the one estimated from the 
regression model under the influence of wind, 
temperature and traffic. It is evident that the regression 
model is capable of modelling the dependence of the 
mean lateral response on the normal component of the 
mean wind speed (Figure 13a). On the other hand, as 
shown in Figure 13b, the regression model 
underestimates the heaving response. This issue may 
be due to the fact that the time information is used to 
reproduce traffic data, which leads to a lower 
estimation of traffic on some days. More importantly, 
as observed in the actual data, the outcome of the ANN 
model shows no clear wind-induced effects on the 
standard deviation of the heaving responses, which is 
caused by the dominant influence of traffic. 

By adjusting the time information in the input of the 
regression model, the traffic-induced effects on the 
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bridge response can be minimised. In Figure 14Error! 
Reference source not found., the ANN estimates having 
traffic-induced effects being minimised are plotted in a 
comparison with the actual data. It is evident that no 
significant variations on the relationship between the 
mean lateral response and the normal component of 
the mean wind speed are observed (Figure 14a). This 
indicates that traffic poses very minimal effects on the 
lateral movement of the bridge as discussed in Section 
2.3. On the other hand, dramatic changes are evident 
on the plot of the standard deviation of the heaving 
response (Figure 14b). By alleviating traffic-induced 
effects, a clear quadratic relationship is revealed, 
particularly at wind speeds higher than 5ms-1, which 
was not observed in Figure 13b. At lower wind speeds, 
the spread of ANN estimates significantly reduced from 
0.15m to 0.05m approximately. These results not only 
indicate the strong influence of traffic on the heaving 
response but also demonstrate the great potential of 
this ANN-based regression model in decoupling effects 
due to wind, temperature and traffic. 

 

IV. CONCLUSION 

In this paper, the current progress of the GeoSHM 
Demonstration Project has been discussed focusing on 
understanding and modelling some aspects of the 
baseline performance of the FRB. Using the monitoring 
data in 2015 and 2016, the ANN-based regression 
model has been generated to model the dependence of 
the lateral and heaving responses on wind, 
temperature and traffic. Residuals between the actual 
data and the ANN-estimates have been utilised as a 
means to assess effectiveness of the regression model. 
Since residuals were found to follow normal 
distributions, 95% confidence intervals were evaluated 
to define the upper and lower bounds of ANN 
estimates. By implementing this regression model, 
trends and diurnal patterns in the bridge responses 
were successfully captured. More importantly, the 
selected results showed that, by varying corresponding 
inputs, this ANN-based regression model offered a 
means to separate effects of wind from those of 
temperature and traffic.  
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 (a) 

 
(b) 

 
Figure 13. Results of the ANN-based regression model on 

estimating wind-induced responses under in the influence of 
wind, traffic and temperature. 

(a) 

 
(b) 
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Figure 14. Results of the ANN-based regression model on 
estimating wind-induced responses when traffic-induced 

effects are minimised. 

References 

Bishop, C. (1996). Neural Networs for pattern recognition. 
USA: Oxford University Press. 

Chen, Q., W. Jiang, X. Meng, P. Jiang, K. Wang, Y. Xie, J. Ye 
(2018). Vertical deformation monitoring of suspension 
bridge tower using GNSS: A case study of the Forth Road 
Bridge in UK. Remote Sensings, Vol 10, No. 364. 

Cross, E.J, K.Y. Koo, J.M.W. Brownjohn, K. Worden. (2013). 
Long-term monitoring and data analysis of the Tamar 
Bridge. Mechanical Systems and Signal Processings, Vol 35, 
No. 1, pp 16-34. 

Dervilis, N., K. Worden, E.J. Cross (2015). On robust regression 
analysis as a means of exloring environmental and 
operational conditions of SHM data. Journal of Sound and 
Vibration. Vol 327, pp 279-296. 

ESA Website: GeoSHM Demo Projecta-GNSS and EO for 
Structural Health Monitoring of Bridges – Demonstration. 
Available at:    https://business.esa.int/projects/geoshm-
demo-project (accessed on 28 March 2018). 

Failure Knowledge Database. Available online: 
www.shippai.org/fkd/en/cfen/CD1000144.html (accessed 
on 25 March 2019). 

Laory, I., T.N. Trinh, I.F.C Smith, J.M.W. Brownjohn (2014). 
Methodologies for predicting natural frequency variation of 
a suspension bridges. Engineering Structures, Vol. 80, pp 
211-221. 

Liao, M., T.A. Okazaki (2009). Computational study of the I-
35W bridge collapse (CTS09-29). Centre for Transportation 
Studies, University of Minnesota, Minneapolis, USA, 2009. 

Meng, X., D.T. Nguyen, Y. Xie, J.S. Owen, P. Psimoulis, S. Ince, 
Q. Chen, J. Ye, P. Batia (2018). Design and implementation 
of a new system for large bridge monitoring – GeoSHM. 
Sensors, Vol 18, No. 775. 

Meng, X., Y. Xie, P. Psimoulis, D.T. Nguyen, J.S. Owen, G. Ye, 
L. Wu, S. Pan, J. Qian, P. Bhatia, B. Valentine, P. Madden 
(2018). Design and implementation of the new system for 
long-span bridge monitoring – from GeoSHM to iSHM. In: 
Proc. Of the 4th Joint International Symposium on 
Deformation Monitoring (JISDM2019), Athens, Greece. 

Miami Herald. Available online: 
www.miamiherald.com/news/local/community/miami-
dade/west-miami-dade/article207358659.html (accessed 
on 23 March 2019). 

Ni, Y.Q., H.F. Zhou, J.M. Ko (2009). Generalization capability of 
neural network models for temperature-frequency 
correlation using monitoring data. Journal of Structural 
Engineering, Vol 135, No. 10, pp 1290-1300. 

The Guardian. Available online: 
www.theguardian.com/cities/2019/feb/26/what-caused-
the-genoa-morandi-bridge-collapse-and-the-end-of-an-
italian-national-myth. 


