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SUMMARY  

 

With the development of urbanization, conflicts between the demand for land due to urban 

expansion and the limitation of land resources contribute to the appearance of complex buildings 

below and above land surface. Traditional two dimension (2D) cadastre has encountered great 

challenge in registering overlapping and interlocking constructions in the urban area. There is no 

doubt that developing three dimension (3D) cadastre could resolve the problems in registering and 

managing objects with complex structures more efficiently. Much research has been carried out on 

the development of 3D cadaster in recent years, which is conducive to the implementation of 3D 

cadastral management. However, since Euclidean geometry lacks consistency in unified 

representation form for cadastral objects with different dimensions, traditional cadastral data models 

based on Euclidean geometry represent dimensional cadastral objects in a rather different way. Due 

to the dimensional isolation characteristics of Euclidean geometry, representation and management 

of 3D cadastral objects are more complex than 2D cadastral objects, thus hindering implementation 

of 3D cadastral objects management and updating. In order to represent cadastral objects with 

different dimensions in a unified multidimensional manner, Conformal Geometry Algebra (CGA) is 

introduced in this paper. As the hierarchical Grassmann structure corresponding to the hierarchical 

structure of dimensions in CGA, cadastral objects in different dimensions can be expressed in a 

unified form with outer product. Different dimensional objects can be organized and stored by the 

multivector structure in a multidimensional unified way in CGA. The advantages of CGA in 

multidimensional expression are used to construct a new cadastral data model which is introduced 

briefly in this paper to represent multidimensional objects in a unified form. Since 3D cadastral 

objects spatial updating is important in 3D cadastral management, operators based on CGA are 

developed to realize 3D cadastral objects’ spatial merging in a symbolic way. The method for 3D 

cadastral spatial parcel merging based on CGA operators is analyzed in detailed in this paper. Case 

studies have been carried out to elevate the new method for 3D cadastral objects’ updating. Results 

show that our method can merge spatial objects in a more symbolic and geometry-oriented way 

compared with the traditional way based on Euclidean geometry. 
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1. INTRODUCTION 

 

Since the two dimension (2D) cadastre cannot clearly express and manage the complex buildings 

and cadastral rights in urban area, the three dimension (3D) cadastre has been developed to address 

those limitations in traditional 2D cadastral namagement. Numerous developments for 3D cadastre 

have been achieved in the past few years. Several types of 3D cadastral data models have been 

developed (Henssen 1995, Meyer 2001, ePlan 2010, ISO19152 2912).  

 

Since the land ownership boundaries and the rights should be strictly and accurately defined in 

cadastral registration, 3D cadastral data models use the topological relations among dimensional 

components to represent the construction structures of the 3D cadastral parcels (Tse and Gold 2003, 

Zlatanova et al 2004, Ying et al 2014). Therefore, the most typical data representation models for 

the 3D cadastre are the topology-based. They focus on the description of topological relations 

among different dimensional construction elements of 3D objects. The essence of those topological 

data models is actually a 3D extension of topological relations among point, line and plane used in 

2D dimensional space. And the combining and splitting of the 3D cadastral parcels are based on the 

complex topological relation-based intersection and splitting. 

 

Almost all the current existing 3D cadastral data models are constructed in Euclidean geometry 

space. However, different dimensional objects in Euclidean space cannot be represented in a unified 

expression form. Expression methods for 3D objects in Euclidean space are distinct from 2D 

objects. Spatial representations for 3D parcels in a cadastral database are more complicated than 2D 

parcels. The complexities of topological relationships among components of 3D objects increase the 

difficulty of development of 3D cadastre. The hierarchical Grassmann structure is not consistent 

with the hierarchical structure of dimensions in Euclidean space, which is the main reasons for the 

division of multidimensionality in Euclidean space (Yuan et al 2013). Limitations of Euclidean 

geometry in multidimensional expression cause problems in the extension and development from 

2D cadastre to 3D cadastre. There are still no universally accepted 3D cadastral data models for 

complex geometries representation efficiently. How to store and update geometry and topological 

relations for 3D cadastral objects in database efficiently is still a challenge in the 3D cadaster 

development (van Oosterom 2013). 

 

To solve problems encountered in 3D cadastre development, we have introduced Conformal 

Geometric Algebra (CGA) in 3D cadastral data model construction (Zhang et al 2016). In this paper 

we mainly focus on the algorithm for 3D objects updating which is represented by 3D cadastral 

spatial data model based on CGA.  
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2. CONFORMAL GEOMETRIC ALGEBRA 

 

2.1 Background of CGA 

 

Lots of mathematicians try to integrate different geometric system into a unified algebraic 

framework in middle of 19th century. The concept of Quaternions is first developed by Irish 

mathematician Hamilton in 1843, which successfully extended complex number to higher 

dimension (compare to 2D). In the next year 1844, Germany mathematician Grassmann published 

his masterpiece, The Theory of Linear Extension, a New Branch of Mathematics, in which he 

developed the concept of outer product. Based on outer product, hypercomlex number can be 

extended to n dimensions. And after thirty five years, professor Clifford proposed the concept of 

geometric product based on which he developed the theory of geometric algebra that integrated 

Grassmann extensive algebra and Hamilton Quaternioins in 1878. Geometric algebra is a kind of 

algebraic language which is used to describe and solve geometric problems (Clifford 1878). It was 

developed based on Hamilton Quaternions and Grassmann extensive algebra by professor Clifford. 

As a result, geometric algebra also called Clifford algebra.  

 

The ability of geometric algebra in unifed multidimensional expression and geometric computation 

can be used to solve geometric problems in algebraic form. Inner product, outer product and 

geometric product are three basic arithmetic operators for geometric space construction and 

geometric objects representation in geometric algebra (Perwass 2009). Outer product can be used to 

extend dimensions while inner product can realize the opposite effect. For instance, the outer 

products between two vectors produce bivector with two dimensions and the inner products of two 

vectors produce scalars. Outer product and inner product are integrated in geometric product as 

following definition. 

 

Definition 1: If A and B are two objects with arbitrary dimensions, the geometric product of  A and 

B can be difine as follow: 

AB A B A B= × + Ù  
in which A B× denotes the inner product of A and B and A BÙ means outer product. If both A and 

B are vectors, we can obtain a scalar from inner product and a bivector from outer product. This 

mean that in the result of geometric product different dimensional objects can be integrated which is 

similar to real and imaginary parts in complex number. 

 

Euclidean geometry, homogeneous geometry and conformal geometry are three types of geometric 

algebraic systems. Euclidean geometric space is the most familiar one to people because it is in line 

with people’s understanding of the world. However, the structure of outer product (also called 

hierarchical Grassmann structure) of different dimensions in Euclidean geometric space are 

inconsistent with the construction structure of geometric objects. For example, points in Euclidean 

geometric space are represented by vectors (from original point to current point). From theory of 

geometric algebra we know that the outer product of  two vectors produce bivector with two 

dimensions which can be denote by a plane containing the two vectors. This mean that the outer 

product of two Euclidean points produce a plane instead of the line containing them. Homogeneous 
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geometric space is developed on the basis of Euclidean space by introducing an additional 

projection dimensions 0e . The hierarchical Grassmann structures in Homogeneous geometric space 

are consistent with the construction structure of  geometric obejcts. For example, outer products of 

two homogeneous points represent the line that determined by the two points. And outer products of 

three homogeneous points represent the corresponding plane. Although homogeneous geometirc 

space realizes the consistency between Grassmann structure and construction structure of geometric 

objects, the geometric meaning in inner products of homogeneous points is still unclear. Conformal 

geometric algebraic space is developed on basis of homogeneous geometric space by introducing 

another additional dimension – the infinite point e¥ . The introduction of infinite pont means that 

the inner product in comformal geometric algebraic space has the same meaning with Minkowski 

inner product. The inner product of two CGA points represents the Euclidean distance between the 

two points. Meanwhile, the geometric meaning of cicle and line, sphere and plane have been unified 

in CGA space. Compared with other geometric systems, such as Euclidean geometry and 

homogeneous geometry, CGA has the unique advantages of simple and intuitive structure, distinct 

geometric meaning and unified characteristics with regard to the expression of the geometry (Yuan 

et al 2014, Rosenhahn and  Sommer 2005, Hildenbrand 2011). 

 

2.2 Relative Studies on CGA’s Applications 

 

As a branch of Clifford algebra, CGA waas developed by David Hestenes, Hongbo Li and Alyn 

Rockwood (Hestenes 2001, Li et al 2001 and Li 2008). Advantages of CGA in unified 

multidimensional representation and hybird dimensional computations (Hestenes 2002) have lots of 

important applications in many research fields such as geometry, engineering, computer vison and 

so on (Perwass 2009, Cameron et al 2005, Wareham et al 2005). Theory of CGA was applied in 

area of Geographic information system (GIS) in recent years. Based on geometric algebra, Yuan el 

al (Yuan et al 2010) developed a prototype software system in which they provides a useful tool for 

investigating and modeling the distribution characteristics and dynamic process of complex 

geographical phenomena under the unified spatio-temporal structure.  Yu et al (Yu et al 2015) 

constructed a Delaunay – Triangulated Irregular Network intersection for change detection with 3D 

vector data based on advantages of CGA in topological relationship computations. Yuan et al (Yuan 

et al 2014)  studied the network topology expression and algorithm construction based on Clifford 

algebra. Hu et al (Hu et al 2015) introduced geometric algebra to design methods for data modeling, 

spatio-temporal queries and dynamic visualization. Yuan et al (Yuan et al 2013) developed data 

models, data indexes, and data analysis algorithms for multidimensional vector data, raster and 

vector field data based on advantages of geometric algebra in multidimension-unified and 

coordinate-free. These applications of geometric algebra in GIS research indicate that the 

advantages of geometric algebra in multidimensional representation and coordinate-free in spatial 

topological relations computations provides a new methematical tool for development of GIS. 

 

2.3 A Cadastral Data Model Based on CGA 

 

Based on exsiting research results in CGA applications, we introduced CGA to the area of 3D 

cadasre development (Zhang et al 2016). A 3D cadastral spatial data model which can realize the 
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unified expression form for different dimensional cadastral primitives is developed based on CGA. 

Cadastral spatial units are decomposed into three types of primitive elements including points, 

boundary lines and boundary faces. All above three primitive elements together with the original 

Euclidean points are embedded into conformal space. Points, boundary lines and boundary faces in 

conformal space are represented by vector, bivector and quadvector, respectively. Primitive 

elements with different dimensions in CGA can be expressed by outer product uniformly. 

Considering that results of outer products such as bivectors do not have boundary constraint, the 

sequence of point sets that compose the corresponding cadastral objects are employed to restrict the 

their boundary. Example can be saw in figure 1 which show how we definite a cadastral facet in 

conformal space. Cadastral spatial unit in conformal space are stored and organized in the 

multivector structure, which is a basic mathematical element that can simultaneously integrate 

multiple dimensional primitives in CGA. All the dimensional component elements that construct 

the corresponding cadastral spatial unit are integrated in the multivector structure and organized 

according to different dimensions. To be understandable, figure 2 shows the process of representing 

a 3D cadastral spatial unit denoted by cube. Relative concepts and definitions in figure 2 can be 

found in reference Zhang et al 2016. {} in figure 2 represents the sets of geometric elements’ 

algebraic expression with the same dimensions. 

 

4 1 2 3 1 2 3 4 5( ){ , , , , }GeoPrim P P P e P P P P P< > ¥= Ù Ù Ù

P1

P2

P3
P4

P5

1 2 3:Plane P P P e¥Ù Ù Ù

Facet

 
 
Figure 1. A primitive facet represented by outer products in CGA (Source: Zhang 2016) 

 

From the definition of cadastral spatial unit in figure 2 we can know that the algebraic expressions 

in CGA are hybrid dimensional structure which integrated in the multivector structure. The 

conformal algebraic expressions of cadastral objects enable us to handle them as an entity. It should 

be noted that all the different dimensional components are independent. This mean that all the 

dimensional elements contained in the multivector structures can be employed to compute the 

spatial relations independent when we need to analyze the spatial relations between two cadastral 



 

 

 

 

 

 

 

 

objects. In this paper, we utilize powerful computation ability of CGA to define the method for 

merging cadastral objects. 

 

3. SPATIAL MERGING ALGORITHM BASED ON CGA 

 

3.1 Relative concepts in CGA 

 

3.1.1 Blade 

 

The blade, generated by outer product, is a k-dimensional object that used to express the 

corresponding dimensional subspace in geometric algebra. This is different from linear algebra in 

which objects in all dimensions are represented by vector. For example, 1-blades (vectors) in 

geometric algebra used to denote one dimensional subspace and 2-blades (bivectors, generated by 

outer product of two vectors) denote two dimensional subspace. In the 3D cadastral data model that 

based on CGA, blades with corresponding dimensions are the geometric container for the basic 

cadastral components of GeoPrim (Zhang 2016). 
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Figure 2. A 3D cadastral spatial unit algebraic representation in CGA (Source: Zhang 2016) 

 

3.1.2 Inner product 
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Inner product in CGA is a kind of subtraction operator for subspaces. It is different from the point 

product in vector algebra whose operation objects are limited to vectors. The definition of inner 

product is shown as follows. 

 

Definition 2: If A and B are two blades with grade s and t in 4,1Cl , the inner product of them is 

defined as follow: 

0
,s t r

s t
A B AB where r

s t s t

<ì
< > × < > =< > = í

- ³î
  

 

Inner product in CGA has a clear geometric meaning. The resut of inner product of two blades can 

be used to denote the distance or angle between them. 

 

3.1.3 Pseudo-scalar 

 

The pseudo-scalar denoted by I  is the highest dimensional blade in relative geometric space. For 

example, in 2Cl the pseudo-scalar is 1 2I e e= Ù  while in 3Cl the pseudo-scalar is 1 2 3I e e e= Ù Ù  and 

in the conformal space 4,1Cl , the pseudo-scalar is 1 2 3 0I e e e e e¥= Ù Ù Ù Ù . 

 

3.2 Cadastral objects merging algorithm based on CGA 

 

In this paper, the merging algorithm for cadastral objects expressed in CGA is developed. The 

algorithm mainly includes two parts: the spatial relations determination for cadastral objects and the 

merging method. As cadastral objects are represented by multivector in CGA, the spatial relations 

among them can be determined in a more algebraic way. As we discussed, the cadastral objects in 

CGA are represented and organized in multivector structure in which the different dimensional 

components are independent. As a result, the determination of topological relations among cadastral 

objects can be transferred to judge their different dimensional components that organized in 

multivector. The meet operation between two cadastral objects that need to be merged is defined as 

follows. 

 

Definition 3: If A and B are two blades in 4,1Cl , the meet operator for A and B  is defined as follow: 

 
*( , )M Meet A B A B A B= = Ç = ×  

 

Where M  is the common part of A and B , *A is the dual of blade A (Jaap 2003). A the meet 

operator have two possible result which is depend on the result of 2M , which is shown as follow:  

 

2
0

0

no intersection
M

intersection exists

=ì
= í

>î
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Consider that 3D cadastral objects mainly represent by lines and planes in CGA, the condition of 
2 0M < is not occur in this case which may exist in cirlce or sphere. It should be noted that the 

blades in CGA is infinite. The intersection of two blades do not equal to the intersection of 

GeoPrims which are used to represent cadastral objects. The intersection relations of GeoPrims 

need to be determined based on the retersection results of blades by further boundary operator 

which is difined as follows. 

 

Definition 4: If AGeoPrim< > and BGeoPrim< > are two primitive components that contained in blades 

A and B in 4,1Cl  with the same dimensions, the boundary operator for AGeoPrim< > and BGeoPrim< >  

is defined as follow: 

 

( , )

( , ) & ( , )

( , ), (0,0)

A B

B A

Boundary GeoPrim GeoPrim

Boundary Ptas GeoPrim Boundary Ptbs GeoPrim

mPtas nPtbs

< > < >

< > < >=

=  
 

Where Ptas and Ptbs are the boundary point sets that construct AGeoPrim< > and 

BGeoPrim< > ,respectively. mPtas is the number of points belonging to AGeoPrim< > that contained in 

BGeoPrim< > and nPtbs is the number of points belonging to BGeoPrim< > that contained in 

AGeoPrim< > .   We suppose that m and n denote the total nunber points belonging to AGeoPrim< >

and BGeoPrim< > , respectively. Consider the characteristics of cadastral expression that all the 

GeoPrims between cadastral objects with different owerships should be independent. Then we can 

conclude as follow: (1) if mPtas nPtbs m n= = = , this mean that AGeoPrim< > and BGeoPrim< >  
are 

the common parts which have to disappear in the process of cadastral objects merging; (2) if 

0 mPtas nPtbs m n< = < = and the normal direction of AGeoPrim< > and BGeoPrim< > is the same, this 

mean that AGeoPrim< > and BGeoPrim< >  
are the two parts that possibly need to merge; (3) if 

0mPtas nPtbs= = , this mean that AGeoPrim< > and BGeoPrim< >  
are disjoint. To the second 

condition that GeoPrims  possibly need to merge, we need to confirm whether exist other 

GeoPrims  with the opposite direction that shared the same construtive points with current 

GeoPrims  that need to be merged. If there are no other GeoPrims , then we can merge current two 

GeoPrims . Otherwise, the current two GeoPrims need to keep independent. 
 

We have discussed the method for determination of cadastral components that need to disappear 

and merge in the process of cadastral objects merging. Now we will show how to merge two 

cadastral objects which is expressed based on CGA by the multivector structure. Since cadastral 

objects can be expressed by kGeoPrim< >  (Zhang 2016), the combination of cadastral objects can be 

transferred to the problems of kGeoPrim< > combination. As the range of components is limited by 

the sequence of constructive points, if we completed the combination of cadastral facet which is 

expressed by 4GeoPrim< > then we can obtain other components such as 3GeoPrim< >  from the 
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limitative sequence points. In conclusion, the essence of combination of cadastral objects that are 

expressed by multivector is to realize the combination of corresponding cadastral facets. The 

combination of two cadastral facets can be defined as follows. 

 

Definition 5: AFacet< > and BFacet< > are two constructive facets in 4,1Cl for cadastral A and B, their 

conformal representation are shown as following: 

1 2 3 1 2 3
( ){ , , , , , , , , , , }

mA a a a a a a w x y z aFacet P P P e P P P P P P P P< > ¥= Ù Ù Ù , , , , , , , }, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , ,
 
and

 

1 2 3 1 2 3
( ){ , , , , , , , , , , }

nB b b b b b b s y x t bFacet P P P e P P P P P P P P< > ¥= Ù Ù Ù , , , , , , , }, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , ,, , , , , , , . The point sets , ,x yP P,x y, P, in 

AFacet< > are same with the inversion of the point sets , ,y xP P,y x, P, in BFacet< > . Now if we merge 

AGeoPrim< > into BGeoPrim< > , the result of combination can be defined as follows:  

1 2 3 1 1
( ){ ,..., , ,..., , ,..., , ,... }

m nAB b b b b s z a a w t bFacet P P P e P P P P P P P P< > ¥= Ù Ù Ù
 

 

 
 

Figure 3. An example for cadastral facet combination based on CGA representation 



 

 

 

 

 

 

 

 

 

4. CASE STUDIES 

In order to evaluate the combination algorithm for cadastral objects expressed based on CGA, we 

design a simple case study. The experimental data is created by SketchUp software. We select two 

polyhedrons to denote the cadastral objects as examples. Results are shown in figure 3. We select 

the facet constructed by points 9, 10, 11, 14 in cadastral object A and 1, 2, 8, 9, 14, 11 in cadastral 

object B to merge as an example. The representations in CGA for above two selected facets are 

9,10,11,14 9 10 11 9 10 11 14( ){ , , , }Facet P P P e P P P P< > ¥= Ù Ù Ù
 
and 

1,2,8,9,14,11 1 2 8 1 2 8 9 14 11( ){ , , , , , }Facet P P P e P P P P P P< > ¥= Ù Ù Ù , respectively. If we merge facet A into 

facet B, the combination result should be 1,4,12,11 1 2 8 1 2 8 10( ){ , , , }Facet P P P e P P P P< > ¥= Ù Ù Ù  according 

to definition 5 which is shown in figure 3. The components’ expression of 1,4,12,11Facet< >  in 

multivector such as constructive arcs and points can be obtained from its limitative points sequence 

in CGA expression. 
 

5. CONCLUSION 

 

In this paper, we introduced the basic information of geometric algebra and relative research results 

based on geometric algebra. The 3D cadastral data model based on CGA was mainly introduced. 

This study is a subsequent research based on Zhang et al 2016. We discussed the method to 

determine topological relations among cadastral objects which were represented based on CGA. 

Then we designed the algorithm for combination of cadastral facets which were organized and 

expressed within multilvector structure. And other dimensional components in multivector for 

cadastral objects can be obtained easily from the relative facet’s CGA expression. Finally, we 

designed a simple case study to demonstrate our combination algorithm for cadastral objects. 
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