

Incorporating Episodic Vertical Displacements into Vertical Reference Frames

Nic Donnelly | Land Information New Zealand

Contents

- Examples from New Zealand earthquakes throughout
- Types of vertical deformation
- Impact on global and local reference frames
- Measuring vertical deformation
- Modelling vertical deformation
- Using a vertical deformation model

1. Types of Vertical Deformation

Continuous Vertical Deformation

- Until recently, vertical signal often difficult to detect (GNSS noisier in vertical)
- Secular vertical deformation
- Non-secular vertical deformation
 - Post-seismic decay
 - Natural subsidence
 - Human-induced subsidence
 (resource extraction)
 - Slow landslides
 - Slow earthquakes

Episodic Vertical Deformation

- Earthquakes the major natural cause
- Landslides
- Subsidence

New
Zealand
Examples

Name	Date	Magnitude	Max Vt (m)
Secretary Island (Fiordland)	22 Aug 2003	7.2	0.72
Macquarie Island	24 Dec 2004	8.1	0.005
George Sound (Fiordland)	16 Oct 2007	6.7	0.27
Dusky Sound	15 Jul 2009	7.8	0.39
Darfield	4 Sep 2010	7.1	1.75
Christchurch	22 Feb 2011	6.3	0.48
Christchurch	13 Jun 2011	6.3	0.13
Christchurch	23 Dec 2011	6.0	0.36
Cook Strait	21 Jul 2013	6.0	0.024
Lake Grassmere	16 Aug 2013	6.6	0.26

2. Impact on Global and Local Vertical Reference Frames

Singapore, 27-28 July 2015

Global vs Local Frame

Global (eg ITRF)	Local (eg NZGD2000)
Driven by global science requirements	Driven by national spatial community requirements
Time-varying coordinates for ground-fixed marks	Time-invariant coordinates for ground-fixed marks
Plate motion and/or deformation models to propagate coordinates between epochs	Plate motion and/or deformation models to generate reference coordinates
Native system for modern positioning techniques (GNSS)	Modern positioning techniques (GNSS) require transformation to local frame

Geosystems

Deformation Model for ITRF Coordinate Propagation

- Little overall impact on global frame
 - Requires offset at ITRF station
- ITRF coordinates change due to episodic deformation, but this change is often less significant than a short period of continuous deformation

MQZG

Impact on Local Reference Frame

- Relative accuracy of local frame is compromised
- Fluids may no longer flow from a greater height to a lesser height

User Requirements for Vertical Deformation Modelling in a Local Frame

- Heights need to reflect fluid flow
- Maintain relative accuracy, especially over short distances
- Often want coordinates to reflect "local" vertical deformation, but the definition of "local" is application-dependent. Models can hide vertical deformation, which can be dangerous. Care is required!
- Generally don't want coordinates changing for consistent vertical deformation over large areas

3. Measuring Vertical Deformation

Singapore, 27-28 July 2015

CORS

- Updated heights computed very soon after an event
- Other data uses these updated heights as control

Page 14

GNSS Campaigns and Levelling

Trimble

Levelling

Singapore, 27-28 July 2015

Singapore, 27-28 July 2015

DInSAR -Millimetreaccurate **Deformation**

Singapore, 27-28 July 2015

DInSAR Example

Singapore, 27-28 July 2015

Multiple Measurement Techniques

Technique	Nominal Precision	Contribution to Geodetic System Re-establishment			
Continuously Operating Reference Stations	0.001 – 0.010 m	Immediate indications of co- seismic displacement, monitoring of post-seismic and inter-seismic defor- mation. Provide the framework for all other GNSS surveys.			
Static GNSS	0.005 – 0.010 m	Contributes to earthquake deforma- tion models. Provides framework for rapid static surveys			
Rapid Static GNSS	0.010 – 0.020 m	Provides the densest level of control to support other surveys. Contributes to earthquake deformation models			

Multiple Measurement Techniques

Trimble

Geosystems

Technique	Nominal Precision	Contribution to Geodetic System Re-establishment
InSAR	0.010 – 0.050 m relative	Contributes to earthquake deformation model
Airborne LIDAR	0.1 – 0.3 m vertical	Detailed model of height changes across the city, to assist flood con- trol; also used to map large horizontal changes due to ground failure, using sub-pixel correlation
Precise Leveling	0.001 – 0.010 m vertical	Precise orthometric height control, required for accurate design of grav- ity-reliant engineering schemes (e.g.,
P :		

4. Modelling Vertical Deformation

Modelling Deformation

- GNSS data provides threedimensional displacements at surveyed points
- InSAR provides displacements in the direction of line of sight between the satellite and ground with a resolution of tens of meters
- Inversion software is used in a twostep process to estimate parameters for location and geometry of the fault plane(s), and magnitude and direction of slip

Deformation Model Patches

Canterbury Earthquakes Submodels

Sponsors:

Canterbury Earthquakes Nested Grids

Grid	No Lon	No Lat	Size Lon (deg)	Size Lat (deg)
A	52	54	0.15	0.125
В	50	59	0.075	0.0625
С	84	118	0.0375	0.03125
D	141	306	0.01875	0.015625

5. Using a Vertical Deformation Model Example

Canterbury Earthquakes Reverse Patch Example

Trimble

Geosystems

Deformation Model NOT Used

From	То	Туре	Value	+/-	Calc	+/-	Res
			Χ,Υ,Ζ		Χ,Υ,Ζ		E,N,U
BDUF	BDUH	GB	-806.601	0.016	-806.611	0.000	0.003
			-660.795	0.010	-660.791	0.000	-0.009
			756.648	0.016	756.650	0.000	-0.007
			1288.321		1288.326		0.011
Deformation Model Used							
From	То	Туре	Value	+/-	Calc	+/-	Res
			Х,Ү,Ζ		Χ,Υ,Ζ		E,N,U
BDUF	BDUH	GB	-806.601	0.016	-806.611	0.000	0.003
			-660.795	0.010	-660.790	0.000	-0.009
			756.648	0.016	756.650	0.000	-0.007
	From BDUF From BDUF	From To BDUF BDUH From To BDUF BDUH	From To Type BDUF BDUH GB From To Type BDUF BDUH GB	From To Type Value X,Y,Z X,Y,Z BDUF BDUH GB -806.601 -660.795 756.648 1288.321 1288.321 Deformation From To Type Value X,Y,Z BDUF BDUH GB -806.601 -660.795 756.648 756.648	From To Type Value +/- X,Y,Z X,Y,Z X,Y,Z BDUF BDUH GB -806.601 0.016 -660.795 0.010 756.648 0.016 1288.321 Deformation Mode From To Type Value +/- K,Y,Z BDUF BDUH GB -806.601 0.016 -660.795 0.010 756.648 0.016	From To Type Value +/- Calc X,Y,Z X,Y,Z X,Y,Z BDUF BDUH GB -806.601 0.016 -806.611 -660.795 0.010 -660.791 756.648 0.016 756.650 1288.321 1288.326 1288.326 Deformation Model Used From To Type Value +/- Calc X,Y,Z X,Y,Z X,Y,Z BDUF BDUH GB -806.601 0.016 -806.611 -660.795 0.010 -660.790 756.648 0.016 756.650	From To Type Value +/- Calc +/- RDUF BDUH GB -806.601 0.016 -806.611 0.000 -660.795 0.010 -660.791 0.000 756.648 0.016 756.650 0.000 1288.321 1288.326 Deformation Model Used X,Y,Z From To Type Value +/- Calc +/- K,Y,Z X,Y,Z X,Y,Z X,Y,Z X,Y,Z BDUF BDUH GB -806.601 0.016 -806.611 0.000 -660.795 0.010 -660.790 0.000 -660.795 0.010 -660.790 0.000 -660.795 0.010 -660.790 0.000 -660.795 0.010 -660.790 0.000 -660.795 0.016 756.650 0.000

Deformation Model NOT Used

	From	То	Туре	Value	+/-	Calc	+/-	Res
				Х,Ү,Ζ		Χ,Υ,Ζ		E,N,U
	BDUF	BDUH	GB	-806.347	0.016	-806.611	0.000	0.009
Deverse				-660.834	0.010	-660.791	0.000	-0.110
Reverse				756.753	0.016	756.650	0.000	-0.265
Patch with				1288.244		1288.326		0.287
Pre-	Deformation Model Used							
Earthquake	From	То	Туре	Value	+/-	Calc	+/-	Res
Observations				Х,Ү,Ζ		Х,Ү,Ζ		E,N,U
	BDUF	BDUH	GB	-806.347	0.016	-806.354	0.000	0.004
				-660.834	0.010	-660.829	0.000	-0.009
				756.753	0.016	756.758	0.000	-0.002
				1288.244		1288.249		0.010

Key Points

- User requirements for vertical deformation modelling may differ to horizontal requirements
- A range of observation techniques are required to monitor and model vertical deformation: GNSS, precise levelling, InSAR, LiDAR...
- Vertical deformation models can be incorporated into the local reference frame as either forward or reverse patches
- Reverse patches update heights, which ensures heights continue to represent fluid flow

