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ABSTRACT:  
 
In this paper, the noise characteristics of the GPS monitoring series of the base stations in China are analyzed and the velocities of 

these stations are estimated. The impacts of different error sources on velocity estimate are first analyzed. The results show that the 

unmodeled periodic signal will impact on the velocity estimate if the monitoring series is shorter than 4.5 years, and the impacts of 

white noise, flick noise and random walk noise are total different. Moreover, since the common mode error will influence the noise 

component estimates, the principal component analysis needs to be applied to extract the common mode errors from daily 

monitoring series, and then MINQUE needs to be used to correctly estimate the components of white noise and colored noises. The 

w-test is also adopted to determine the optimal stochastic model, which is the flick noise plus white noise, and the flick noise is 

apparently larger than white noise. Station velocities are then computed with optimal stochastic model, and the pure white noise 

model is also used to compute the station velocities as comparison. We processed 11 years data of the GPS monitoring series of 24 

base stations in China with the above two models. The results show that the velocity uncertainty derived from optimal model is over 

6 times larger than that derived from pure white noise model, which indicate that the pure white model get too optimistic velocity 

estimate. From the velocity estimates of the base stations, we can obviously get the tectonic motion trends.  

 

 

 

1. INTRODUCTION 

Common mode error (CME) is one of the spatially correlated 

error sources, which can be mitigated through regional filtering. 

Regional filtering was first introduced by Wdowinski et al 

(1997) to improve the resolution of coseismic and postseismic 

displacements in southern California. Assuming the CME 

spatially uniform, it is computed by the method called 

‘stacking’ of the position residuals from linearly detrended time 

series. Nikolaidis (2002) employed the weighted stacking 

approach, which works well for regional networks such as 

SCIGN but has limitations when the network extends over 

larger regions. While, Dong et al (2006) raised a more rigorous 

approach without the assumption of spatially uniform, which is 

known as principal component analysis (PCA). PCA 

decomposes time series into a set of temporally modes and their 

spatial responses. The data themselves reveal the spatial 

distribution of the common mode error. The regional filtering 

has been widely used in studying various tectonics processes 

(Marquez-Azua and Demets, 2003; Wdowinski et al 2004).   

 

Then, after regional filtering, the MLE (maximum likelihood 

estimation) method is generally used to compute the 

components of white noise, flick noise and random walk noise 

in the time series (Zhang et al, 1997; Langbein and Johnson, 

1997; Mao et al, 1999; Williams et al, 2003; Langbein 2004). 

A.R.Amiri (2007) proposed the LS-VCE (Least squares 

variance component estimation), as the name describes, which 

is based on least squares method to assess the noise 

characteristics of the daily time series. 

Moreover, Zhang et al (1997) deduced the expression of white 

noise, flick noise and random walk noise influenced on the 

velocity uncertainty. It suggested that the velocity error in 

coordinate time series may be underestimated by factors of 3-6 

if pure white noise model is assumed according to the analysis 

of 10 sites in southern California. Mao et al (1999) analyzed the 

23 sites series with period of three years, which showed the 

factors of 5-11. Many researchers yield the similar conclusion 

(Yuan et al, 2008; Jiang et al, 2010; Tian et al, 2011)，that is, 

the colored noises have effects on velocity error estimation. 

 

Here, eleven years (1999-2009) GPS monitoring series of 24 

base stations in China are processed. First, principal component 

analysis is employed in regional filtering. Then, MINQUE 

method is introduced to estimate the noise components due to 

the unbiased nature of it, and w-test is applied to determine the 

optimal noise model. Finally, station velocities are computed 

using the optimal noise model. The velocity estimates can 

reflect the motion trend of Mainland China. 

 

2. IMPACT OF DIFFERENT ERROR SOURCES ON 

ESTIMATED VELOCITY 

Just described as Nikolaidis (2002), the monitoring series of 

each station in each direction can be written as 
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where, it  ( 1,2i m …… ) denotes the epoch in the units of 

years. a  and b are the position and velocity of monitoring 

station, c  and d describe periodic motion ( 1f   stands for 

the annual motion, 2f  stands for the semi-annual motion). 

The term  
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which may arise from environmental and equipment changes or 

human intervention and error, with magnitudes g at epochs
gT , 

and H is the Heaviside step function. Equation (1) can be seen 

as the linear form of 1 1 2 2[ ]a b c d c d gx , so it can be 

described as 

       y = Ax + ε                                                   (2) 

where, A is the design matrix and assuming,
yΣ is the 

covariance matrix of y .Then parameters can be estimated by 

using weighted least squares adjustment, that is, 

                
1 1 1ˆ ( )   T T

y yx A Σ A A Σ y                             (3a) 

And its covariance matrix is 

                
2 1 1

ˆ 0
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where, 
2

0̂  is the variance estimate of unit weight. 

 

2.1 Impact of Unmodeled Periodic Signals 

Assuming there is only one periodic signal and no offsets in 

monitoring series, then equation (1) can be simplified as 

( ) sin(2 ) cos(2 )i i f i f i iy t a bt c ft d ft      
            (4) 

According to Blewitt and Lavallee (2002), the velocity bias due 

to a sinusoidal signal can be expressed as 

2
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where, T  is the total span of the data; fp is the amplitude of 

the periodic signal, which equals to
2 2

f fc d  ,and the phase 

  equals to tan( )
f

f

c
arc

d
. Since annual and semi-annual 

signals are the two dominate signals in GNSS monitoring series, 

we only discuss these two periodic signals. 

Figure 1 shows the theoretical bias for annual and semi-annual 

signals, respectively. And we assume the amplitude is 1mm 

and equals to / 2,  0,  / 2,     , respectively. It clearly 

shows that the velocity biases become unstable when the time 

span is shorter than 2.5 years. And Blewitt and Lavallee gave a 

recommendation: as a practical rule, the minimum data span is 

2.5 years for velocities estimated. Equation (5) just reveals one 

periodic signal’s impact on the velocity estimation. While to 

compute the velocity bias of a realistic repeating signal, the 

frequency has to be replaced by each harmonic of the 

fundamental frequency and each contribution has to be summed 

up. Therefore, the velocity bias for a realistic repeating signal 

over time span T is given as 
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Then Blewitt and Lavallee (2002) expressed the RMS velocity 

bias for a realistic repeating signal as 
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Figure 2 show the RMS velocity bias for the two periodic 

signals with different spectral indexes  (0, 1, 2). And the 

maximum Fourier component k is 183for annual signal, 92 for 

semi-annual signal. It shows that RMS estimate rapidly 

decreases for data spans of 4.5 years or more. Whatever, the 

periodic signals have impact on the velocity estimation, 

especially for the data span shorter than 4.5 years. So it’s better 

to simultaneously estimate the periodical signal if data span is 

shorter than 4.5 years. 
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Figure1 (a). Theoretical velocity bias of annual signal 
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   Figure1 (b). Theoretical velocity bias of semi-annual signal 
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Figure 2(a). RMS velocity bias of annual series 

                     with different spectral indexes 
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Figure 2(b). RMS velocity bias of semi-annual   

series with different spectral indexes 

   

2.2 Impact of Different Noises 

Zhang et al, Mao et al, William et al all presented the effect of 

colored noise on the velocity uncertainties. For white noise, the 

velocity uncertainty can be computed with 

2 2
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For flick noise, the velocity uncertainty can be computed with 
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For random walk noise, the velocity uncertainty can be 

computed with 
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where, 
2 2 2

ˆ ˆ ˆ( ) , ( ) , ( )r w r f r rw   are velocity uncertainty that 

white noise, flick noise and random walk noise caused. T is the 

total observation span in years, t is sample interval, m is the 

observation number, , ,w f rw   is white, flick and random 

walk noise amplitudes respectively. Equations (8)-(10) are 

clearly show that different noises have different impact on 

velocity estimate. Therefore it is necessary to estimate the 

different noise components exactly. 

2.3 Impact of Common Mode Error 

For a regional network daily station coordinate monitoring 

series with n  stations and spanning m days, the m n matrix 

( , )i jt xX ( 1,2,i m ; 1,2,j n ) can be constructed. In 

the matrix X ， each column contains a single coordinate 

components (north, east or vertical) of all epochs from a single 

station, and the each row contains coordinate components for 

all stations at a given epoch. It should be mentioned here that 

the coordinate components are detrended and demeaned first. 

And the matrix X can be decomposed as 

1
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where, kv and ka is called the thk mode. If the eigenvalues are 

arranged in descending order, i.e. 1 2 n     , the first 

principal component corresponds to the biggest eigenvalue 1  

and the elements of its eigenvector 1v are close to each other. 

So it contains the most information of the monitoring series and 

with almost the same spatial response. Thus, common mode 

error (CME) can be expressed by 

1 1( ) ( ) ( )j i i jt t xε a v                                    (13) 

where, ( )j itε denotes the error at epoch i  for station j .  

In regional network analysis, common mode error is the major 

spatially correlated error.  Figure 3 shows the mean value of 

noise components of the GPS base stations in China before and 

after spatial filtering for white noise and flick noise. We can see 

that noise components of the filtered series are much smaller 

than that of the unfiltered, especially the flick noise. 
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   Figure3. Noise component of unfiltered and filtered series 

 

3. VELOCITY ESTIMATION OF GPS BASE STATION 

3.1 Noise Component Estimation 

The fundamental matrix equations for the iterative VCE (Li et 

al., 2010) is 

0 0 0 0

T TyR Σ R v v
                                     (14) 

where, 1 1 1

0 0 0( )T T

n

   R I A A Σ A A Σ ,
0 0v R y . 

0Σ is 

the approximation of 
yΣ , and the other symbols are the same 

as that in Equation (2) and (3). 

We use the general structure of 
yΣ as, 
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where,
i is the ith unknown variance or covariance component 

and 
iU  is the given matrix for the component. The matrix 

equation (14) can be transformed into vector equations as  

                           0 0 0( )TvecM θ v v
 

where,
0 0 1 0 0 0[ ( ) ( )]T T

pvec vecM R U R R U R and ( )vec  denotes 

the vector that converts a matrix to a column vector by stacking 

one column of the matrix underneath the previous one. Then the 

LS criterion is used on the vector equations with the weight 

matrix 1 1

0 0

 Σ Σ  to derive the VCE equation as 

                           ˆ Nθ q                                                 (15) 

The elements of matrix N  and vector q  are
ijn and iq , 

respectively, which are expressed as  

     0 0( )ij i jn tr W UW U
    0 0 0 0

T

i iq  v W UW v
 

where, 1 1 1

0 0 0 0 0 0 0 0

T T    W R Σ R Σ R R Σ . 

The  iteration  method is used to compute the noise component 

with the initial value 
0Σ . 

3.2 Hypothesis Testing on Stochastic Model 

Hypothesis testing is aimed to determine the appropriate noise 

model. The null hypothesis 
0H and the alternative hypothesis 

1H are constructed as follows,  

2 2 2

0 1: :w w i iH H  y yΣ I Σ I U                          (16) 

where, iU is a known cofactor matrix of colored noise, i is the 

component of colored noise, such as flick noise( 2i  ) and 

random walk noise ( 3i  ). The w test model (A.R.Amiri,2007) 

can be presented as 
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where, r is the redundancy of the functional model, which 

equals to m n . ê  is the least squares residuals under the 

null hypothesis, and R refers to -1T -1 T -1

y yI A(A Σ A) A Σ .The 

distribution of w , for large m , can be approximated by the 

standard normal distribution. The goal is to compute the 

statistic values for different alternative hypotheses and select the 

one that gives the maximum value for the hypothesis testing. 

The results in Appendix A suggest that white noise and flick 

noise model is the optimal model to describe the noise of 

monitoring series. 

3.3 Estimation of Velocities 

According to w test, the white noise plus flick noise model is 

superior to other models. Therefore, we use the optimal model 

to estimate the velocities of tectonic block movement. As a 

comparison we also compute it with pure white noise model. 

The covariance matrix of the optimal model is represented as 
2 2

2y w f  I U                                 (18)  

where, I and 
2U are the cofactor matrices of white noise and 

flick noise. According to Mao et al (1999),
2U can be 

approximated by 
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where,
iju is the i row and j column element of matrix 

2U . As 

comparison we also compute the velocities with pure white 

noise model, its covariance matrix is simplified from (18) as, 

                         

2

y wΣ I
  

Then weighted least squares adjustment is used to compute the 

velocities of tectonic block movement with 11 years monitoring 

series of 24 base stations in China. The distribution of these 

base stations and the estimated velocity vector are plotted in 

Figure 4, where the blue arrows stand for the velocities, while 

the red ellipses for the correspondent uncertainties. While the 

uncertainties are too small to display in the figure, it should be 

mention that the displayed uncertainties in Figure 4 are 

amplified by 25 and 2 times, respectively. The uncertainties 

computed with the optimal model are obviously larger than that 

with the pure white model, for detailed information one can 

refer to Appendix B1, which shows the enlarged factors of the 

uncertainties are from 6 to16. As comparison the velocities of 

unfiltered series with the same two noise models are presented 

in Appendix B2. It is clear that CME also affect the estimated 

velocities. So CME should be extracted before parameters 

estimated.  

It can be obviously seen from Figure 4 that the tectonic blocks 

of Mainland China has the obvious trend of moving towards 

eastern, although the details are not revealed since the base 

stations are too sparse. 

 
Figure 4(a). velocity field of Mainland China 

estimated with pure white noise 



 

 

 
Figure 4(b). velocity field of Mainland China 

estimated with white noise and flick noise 

 

4. CONCLUSION 

We can draw the following conclusions from our theoretical 

analysis and numerical results: 

1） Hypothesis testing shows that the dominate noises in 

GPS monitoring series are white noise plus flick noise. 

And the flick noise is even larger than white noise. 

2） The impacts of periodic signal, colored noise and 

CME on velocity estimation should be taken into 

account. Therefore the CME must be filtered out and 

the colored noises must be estimated with proper 

method, such as MINQUE. 

3 ） The tectonic blocks of Mainland China obviously 

move towards eastern. The stations in Qinghai-Tibetan 

Plateau have an obvious north-eastern movement; 

while in the east China, there is a clear south-eastern 

movement trend. 
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Appendix A 

                                                                      The statistic value of hypothesis test 

 N E U 

Stations WF WR WF WR WF WR 

BJFS 2239.7 621.6 1073.2 379.1 741.8 212.0 

BJSH  1249.2 713.7 554.5 217.3 1397.2 434.3 

TAIN  469.2 303.7 631.9 206.5 588.9 141.3 

ZHNZ  932.8 474.7 1428.0 424.6 758.8 176.5 

YANC  3446.2 1195.7 1712.1 644.7 1274.6 375.7 

XIAA  2015.0 654.1 2423.2 598.5 654.1 144.5 

CHUN  1387.4 752.1 893.6 147.6 1150.9 291.9 

WUHN  1170.1 320.9 1324.4 311.7 1431.4 444.2 

HRBN  1328.3 705.4 1346.7 131.9 5411.1 1178.0 

HLAR  1000.5 529.7 1962.0 277.6 1876.0 311.5 

XNIN  2606.4 867.1 2445.3 774.7 1690.4 446.8 

DXIN  3275.6 60.3 2504.1 694.3 2054.2 464.8 

SUIY  822.6 175.8 1439.2 240.2 181.7 18.3 

LUZH  3597.5 1098.3 2250.1 721.1 603.8 140.9 

DLHA  2451.4 909.3 2452.3 706.4 736.4 192.1 

XIAM  712.2 282.9 1154.9 296.4 1575.9 461.4 

GUAN  608.0 164.8 1063.1 207.1 495.4 86.9 

KMIN  2391.8 863.5 434.2 92.2 698.9 155.1 

XIAG  4803.4 985.6 1608.6 324.8 752.0 199.2 

QION  498.3 92.7 911.0 209.0 300.1 80.6 

URUM  2999.9 264.7 357.9 31.4 1623.1 91.0 

LHAS  1038.7 274.0 1451.5 217.8 241.9 64.8 

WUSH  512.9 147.8 1030.4 137.7 282.2 34.3 

TASH  947.2 120.1 273.0 44.5 655.9 158.9 

Appendix B1 

Velocity estimation of filtered series under different noise model（mm/yr） 

 

Station 

 

 

              Noise model  

Amplification 

   factor 
W WF 

velocity SD velocity SD 

BJFS  N -11.21 0.02 -11.30 0.17 8.50 

E 30.35 0.02 30.31 0.17 8.50 

BJSH  N -12.95 0.02 -12.91 0.13 6.50 

E 28.35 0.02 28.46 0.18 9.00 

TAIN  N -13.68 0.02 -13.59 0.16 8.00 

E 29.68 0.02 29.78 0.23 11.50 

ZHNZ  N -12.99 0.02 -12.80 0.17 8.50 

E 30.61 0.02 30.40 0.21 10.50 

YANC  N -11.04 0.01 -10.99 0.13 13.00 

E 30.92 0.01 30.93 0.12 12.00 

XIAA  N -9.31 0.02 -9.10 0.18 9.00 

E 27.25 0.02 27.45 0.19 9.50 

CHUN  N -12.75 0.02 -12.69 0.19 9.50 

E 25.05 0.02 25.11 0.23 11.50 

WUHN  N -13.57 0.05 -12.66 0.35 7.00 

E 30.56 0.03 30.62 0.28 9.33 

HRBN  N -12.98 0.02 -12.85 0.21 10.50 

E 24.22 0.02 24.4 0.27 13.50 

HLAR  N -12.06 0.02 -11.95 0.20 10.00 

E 24.64 0.02 24.84 0.27 13.50 

XNIN  N -4.96 0.01 -4.94 0.12 12.00 

E 37.31 0.02 37.24 0.14 7.00 

DXIN  N -5.73 0.01 -5.84 0.19 19.00 

E 29.99 0.02 30.03 0.17 8.50 

SUIY  N -13. 80 0.02 -13.89 0.30 15.00 

E 23.88 0.04 23.82 0.48 12.00 

LUZH  N -11.93 0.02 -11.81 0.17 8.50 

E 33.62 0.02 33.43 0.17 8.50 

DLHA  N -0.50 0.01 -0.54 0.14 14.00 

E 35.36 0.02 35.20 0.16 8.00 

XIAM  N -14.30 0.02 -14.36 0.25 12.50 

E 31.30 0.03 31.42 0.32 10.67 

GUAN  N -14.07 0.02 -14.01 0.31 15.50 

E 29.43 0.04 29.69 0.42 10.50 

KMIN  N -21.44 0.03 -21.47 0.22 7.33 

E 33.82 0.04 33.79 0.33 8.25 

XIAG  N -18.86 0.04 -19.33 0.46 11.50 

E 29.43 0.05 28.94 0.56 8.88 



 

 

QION  N -15.00 0.05 -14.66 0.38 7.60 

E 31.19 0.05 29.93 0.44 8.80 

URUM  N 5.65 0.05 5.25 0.48 9.60 

E 29.51 0.04 29.64 0.40 10.00 

LHAS  N 14.52 0.02 14.27 0.25 12.50 

E 46.23 0.03 46.15 0.33 11.00 

WUSH  N 13.80 0.02 13.74 0.22 11.00 

E 29.29 0.03 29.36 0.28 9.33 

TASH N 20.90 0.02 20.92 0.27 13.50 

E 24.38 0.03 24.28 0.33 11.00 

                                                                                Appendix B2 

Velocity estimation of unfiltered series under different noise model（mm/yr） 

 

Station 

 

 

              Noise model  

Amplification 

   factor 
W WF 

velocity SD velocity SD 

BJFS  N -10.88 0.03 -10.95 0.30 10.00 

E 30.68 0.03 30.25 0.29 9.67 

BJSH  N -12.70 0.02 -12.66 0.28 14.00 

E 28.58 0.03 28.41 0.29 9.67 

TAIN  N -13.39 0.03 -13.30 0.33 11.00 

E 29.98 0.03 29. 72 0.36 12.00 

ZHNZ  N -12.71 0.03 -12.52 0.31 8.50 

E 30.99 0.03 30.32 0.36 10.33 

YANC  N -10.76 0.02 -10.69 0.27 13.50 

E 31.22 0.03 30.87 0.29 9.67 

XIAA  N -9.07 0.03 -8.85 0.30 10.00 

E 27.54 0.03 27.40 0.33 11.00 

CHUN  N -12.51 0.02 -12.43 0.30 15.00 

E 25.22 0.03 25.07 0.30 10.00 

WUHN  N -12.99 0.06 -12.37 0.46 7.67 

E 30.95 0.04 30.55 0.39 9.75 

HRBN  N -12.73 0.02 -12.59 0.32 16.00 

E 24.39 0.03 24.35 0.32 10..67 

HLAR  N -11.83 0.02 -11.71 0.29 14.50 

E 24.83 0.03 24.80 0.33 11.00 

XNIN  N -4.69 0.02 -4.65 0.25 12.50 

E 37.61 0.03 37.17 0.29 9.67 

DXIN  N -5.45 0.02 -5.54 0.28 14.00 

E 30.29 0.03 29.97 0.28 9.33 

SUIY  N -13. 47 0.03 -13.56 0.38 12.67 

E 24.07 0.05 23.90 0.50 10.00 

LUZH  N -11.62 0.03 -11.48 0.30 10.00 

E 34.15 0.05 33.38 0.37 7.40 

DLHA  N -0.27 0.02 -0.28 0.26 13.00 

E 35.66 0.03 35.14 0.28 9.33 

XIAM  N -13.97 0.03 -14.02 0.35 11.67 

E 31.72 0.04 31.35 0.46 11.50 

GUAN  N -13.81 0.03 -13.73 0.40 13.33 

E 29.52 0.04 29.68 0.46 11.50 

KMIN  N -21.20 0.04 -21.19 0.36 9.00 

E 34.05 0.04 33.73 0.44 11.00 

XIAG  N -18.48 0.04 -18.90 0.53 13.25 

E 30.11 0.07 28.80 0.76 10.86 

QION  N -14.59 0.06 -14.26 0.46 7.67 

E 31.97 0.07 29.86 0.62 8.86 

URUM  N 5.75 0.05 5.42 0.51 10.20 

E 29.57 0.04 29.63 0.41 10.25 

LHAS  N 14.71 0.03 14.49 0.32 10.67 

E 46.49 0.03 46.10 0.39 13.00 

WUSH  N 13.96 0.02 13.92 0.27 13.50 

E 29.39 0.03 29.34 0.30 10.00 

TASH N 21.02 0.02 21.06 0.29 14.50 

E 24.48 0.03 24.27 0.34 11.33 

                           W: white noise 

                              WF: white noise and flick noise 

WR: white noise and random walk noise 

SD: standard deviation 


