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Abstract:  The Extended Kalman Filter has been one of the most widely used methods for 
estimation of non-linear systems through linearizing non-linear models. In recent several 
decades people have realized that there are a lot of constraints in application of the EKF for its 
hard implementation and intractability. In this paper a new estimation method is proposed, 
which takes advantage of the Unscented Transformation method thus approximating the true 
mean and variance more accurately. The new method can be applied to non-linear systems 
without the linearization process necessary for the EKF, and it does not demand a Gaussian 
distribution of noise and what's more, its ease of implementation and more accurate 
estimation features enables it to demonstrate its good performance in the experiment of 
deformation monitoring. Numerical experiments show that the application of the Unscented 
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Kalman Filter in deformation prediction is more effective than that of the EKF. 
Key words: EKF; Unscented Transform; Sigma Point Transform; deformation monitoring 

1. Introduction 

In practical problems of engineering, whenever the state of a system must be estimated from 
noisy sensor information, some kind of state estimator is made use of to fuse the data from 
different sensors together to produce an accurate estimate of the true system state. As is well 
known, the Kalman Filter(KF) is always used to deal with the system whose dynamics and 
observation models are linear, and the Extended Kalman Filter(EKF) is the most widely used 
estimator for nonlinear systems. The EKF applies the Kalman filter to nonlinear systems by 
simply linearizing all the nonlinear models so that the traditional Kalman filter equations can 
be applied. However, as people have found, the use of the EKF in practice has two 
well-known drawbacks. The first one is that linearization can produce highly unstable filters if 
the assumptions of local linearity is violated. The second one is that the derivation of the 
Jacobian matrices is nontrivial in most applications and often leads to significant 
implementation difficulties. 

In this paper a new linear estimator is introduced which yields performance equivalent to the 
Kalman filter for linear systems, yet generalizes elegantly to nonlinear systems without the 
linearization steps required by the EKF. The new estimator uses the Unscented Transform 
proposed by Julier and Uhlmann（1996）to produce a set of points, which we name Sigma 
Points, and are then propagated to accurately approximate the true statistical properties of the 
random variables. As the word ‘Unscented’ is difficult to understand, thus we use ‘Sigma 
Point Transform’ and ‘Sigma Point Kalman Filter’ in this paper just for better understanding.   

The structure of this paper is as follows. Section 2 introduces the Sigma Point transformation. 
Analysis is made to demonstrate this kind of transformation has better approximation 
performance. Section 3 introduces the Sigma Point Kalman Filter method. Section 4 presents 
an example. Conclusion is made within section 5. In the Appendix a detailed comparison is 
made to show that a higher accuracy of approximation of the statistical properties of the 
random variable after nonlinear propagation can be gained using the Sigma Point Transform. 

2  Sigma Point Transformation 

Sigma Point Transformation is in fact the Unscented Transformation proposed by Julier and 
Uhlmann（1996）to calculate statistical properties of random variables after nonlinear 
propagation. Consider problem: propagate a random variable x , whose dimension is xd , 

through a nonlinear function ( )y f x= . Assume x  has mean value x  and covariance xP . 
To compute the statistical properties of y , the following formulas can be used 

                        ( )( )
( )( )

0

   1,

1, 2
x

i x x x
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i x x x x
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in which χ  is a matrix consisting of 2 1xd +  vectors iχ (called Sigma Point), 

( )2
x xd dλ α κ= + −  being a scaling parameter, and constant α  determines the extension of 

these vectors around x  and usually set 1 2 1e α− ≤ ≤ [1]. κ  is another scaling factor, and 

often set as zero for state estimation problems. ( )( )x x
i

d Pλ+  is the i-th column of the 

square root of the matrix. Here ( )xdγ λ= + .  

The acquired Sigma Points are transformed or propagated through the nonlinear function 
( )f i  

                              ( ) ,  0,1, 2i i xY f i dχ= = …                      (2) 

to obtain the transformed vectors iY . And then the mean value and covariance of y  are 
approximated using the weighted mean and covariance of the transformed vectors 
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in which weights iω  are given as 
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And the parameter β  contains the a priori information of x ( for Gaussian Distribution, 
2β = )[2]. 

We can further prove that, using the Sigma Point Transformation, the statistical properties of 
the random variable after nonlinear transformation can be approximated with higher accuracy 
than that using simple linearization used in the Kalman Filter(The prove is shown in 
Appendix of this paper). 

3 Sigma Point Kalman Filter Method 

For the basic framework of the Extended Kalman Filter which involves the estimation of the 
state of a discrete-time nonlinear dynamic system 

                              ( )1 , ,k k k kx F x u v+ =                            (6) 

                              ( ) ,  k k ky H x n=                              (7) 

where kx  represents the unobserved state of the system and ky  is the only observed signal 

of the system. The outer input ku  is known and not a random variable. The process noise kv  
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drives the dynamic system, and the observation noise is given by kn . The system dynamic 
model F  and H  are assumed known. In state estimation, the EKF is the standard method 
of choice to achieve a recursive maximum likelihood estimation of the state kx  

                    ( ) ( )ˆ   k k k k kx predicted x K y predicted y= + ⋅ −⎡ ⎤⎣ ⎦               (8) 

The Sigma-Point Kalman Filter (SPKF) is a straightforward extension of the Sigma-Point 
Transform to the recursive estimation (8), where the random variable has been redefined as 

the concatenation of the original state and noise variables   
Ta T T T

k k k kx x v n⎡ ⎤= ⎣ ⎦ . The sigma point 

selection scheme (1) is applied to this new augmented state vector to calculate the 
corresponding sigma matrix, a

kχ . And the Sigma-Point Kalman Filter equations are given in 
Table 1. It must be pointed out that the implementation of the algorithm needs no explicit 
calculation of Jacobians or Hessians, which are always non-trivial burden of computation. 
And furthermore, the overall number of computations is the same order as that of the EKF[2]. 

As there often appears the special case where the process and measurement noise are additive, 
the computational complexity of the SPKF can be reduced. In such a case, the system state 
vector need not be augmented with the noise vector, which reduces the dimension of the 
sigma pints as well as the total number of sigma point used. The covariances of the noise 
sources are then incorporated into the state covariance using a simple additive procedure.  

Table 1: Sigma Point Kalman Filter(zero mean noise case) 

Initialization 
[ ]0 0x̂ E x=  

( )( )0 0 0 0 0ˆ ˆ TP E x x x x⎡ ⎤= − −⎣ ⎦  

As for { }1, ,k∈ ∞"  

Compute Sigma Points: 

( ) ( )1 1 1 1 1 1ˆ ˆ ˆ    k k k x k k x kx x d P x d Pχ λ λ− − − − − −
⎡ ⎤= + + − +⎣ ⎦  

Prediction: 
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Correction:  

( )
2
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1
k k k kk x y y yK P P−= � �  
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k k

T
k k k y y kP P K P K−= − � �  

where λ  is the composite scaling factor; xd is the dimension of the state vector; 
vR  is the process noise covariance matrix; nR  is the measurement noise covariance 

matrix; iW  is weights as calculated in equation (5). 

 

4. Numerical Experiment 

For the predicting and filtering problem in deformation monitoring, we made numerical 
experiments based on descriptions in (Tor, 2002 and 2003). According to (Tor, 2003), Kalman 
filter is successful in weeding out the sudden surge in the readings even without incorporating 
a smoothing function and has robustness in avoiding the use of spurious observations. 
However, in our data processing, our main aim is to test what a performance improvement the 
SPKF method could gain compared to the EKF method when either system dynamic equation 
or observation equation is or both are nonlinear, so we just use simulated data of height 
displacements for the experiment, and we simplify the state vector as much as possible. The 
simulated data is a non-periodic and non-convergent time series acquired using a nonlinear 
auto regression model. By adding Gaussian white noise to this time series a noised 
observation series can be obtained 

                                 k k ky x n= +                              (10) 

The state-space representation is the following state transition equation combined with (10) 

                               ( )1 1,k k kx f x v− −=                            (11) 

where -1kv  is the model parameter. Note that in equation (11) there is no outer input.  

In the estimation problem, the noisy time series ky  is the only observed input to the EKF 
and SPKF methods. Figure 1 and 2 shows a sub-segment of the estimates generated by the 
EKF and the SPKF respectively, and Figure 3 shows the difference of estimates between the 
EKF and the SPKF. The superior performance of the SPKF is clearly visible. 
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Figure 1: ekf : Mean square error (MSE) of estimate : 0.77069 
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Figure 2: spkf : Mean square error (MSE) of estimate : 0.16437 
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Figure 3: Estimation difference between ekf and spkf 
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5 Conclusion 

The KF as well as the EKF have been the widely used linearity-based methods in a lot of 
engineering problems. However, in practical engineering there are always nonlinear situation 
where linearization could cause loss of accuracy. Therefore, this paper put forwards an 
alternative state estimation method to EKF which is preferable when dealing with nonlinear 
system model equations. The method is based on the Unscented Transform which uses a set of 
sigma points to approximate the actual statistical properties of random variable after nonlinear 
propagation with second order accuracy. Numerical results of the simulated deformation 
monitoring experiment show that the Sigma Point Kalman Filter method can gain great 
improvement in the accuracy of filtering. It is suggested that EKF can be replaced with the 
SPKF in nonlinear situation.  
 
Acknowledgement: The work in this paper is funded by the College Research Project of 
Zhengzhou Institute of Surveying and Mapping.  
 
 

Appendix: Accuracy Analysis 

For the prediction of the future state or observation of a dynamic system, let us assume that 
x  is a Gaussian random variable, with mean x  and covariance xP . Variable y  is a 
nonlinear function of x  

                                   ( )y f x=                              (A1) 

The Taylor series expansion of ( )f x at the mean x  can be represented as follows 

                      ( ) ( )
0

( ) ( )
!

n
x

n
x x

x f x
f x f x x

n
δ

δ
∞

=
=

⎡ ⎤⋅∇
= + = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑               (A2) 

where ( )( )x

f x
f x

x
∂

∇ =
∂

, which is the Jacobian of partial derivatives of ( )f x  with respect to 

x . Define the following operator 

                            ( ) ( )nn
x x

x x
D f x f xδ δ

=
⎡ ⎤⋅∇⎣ ⎦�                     (A3) 

The Taylor series expansion of the nonlinear function ( )y f x=  can be written as follows 

                 2 3 41 1 1( ) ( )
2 3! 4!x x x xy f x f x D f D f D f D fδ δ δ δ= = + + + + +"         (A4) 

where xδ  is a zero-mean Gaussian random variable with covariance xP . From the statistical 

properties of xδ , the series expression of the actual mean is obtained 

            ( ) ( ) ( ) 4 61 1 1
2 4! 6!

T
x x xx x

y f x P f x E D f D fδ δ=

⎡ ⎤⎡ ⎤= + ∇ ∇ + + +⎢ ⎥⎣ ⎦ ⎣ ⎦
…          (A5) 

Considering the statistical properties of xδ  we can acquire the series expansion of the actual 
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covariance after nonlinear transform or propagation 
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    (A6) 

in which xA  is the Jacobian of ( )f x  at x . According to the series expansion of the actual 

posterior mean and covariance, the linearization process used in the EKF can be easily 
obtained 

( )LINy f x=                              (A7) 

( ) T
y x x xLIN

P A P A=                            (A8) 

The comparisons between (5) and (7), (6) and (8) tell us that only when the second and higher 
order terms within the mean and the fourth and higher order terms within the covariance are 
really negligible, can the results through linearization be accurate. Actually, most systems are 
nonlinear. Linearization not only results in poor accuracy but needs to compute the Jacobians. 
 
On the other hand, as the Sigma Points are calculated in the following way 

                              ( )
   

i x i

i

x d

x

χ λ σ

σ

= ± +

= ± �
                        (A9) 

where iσ  represents the i-th column of the square root of the covariance matrix xP , which 

means 
1
( )xd T

i i xi
Pσ σ

=
=∑ . Therefore, the nonlinear function can be expanded at x  
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∑ � � …     (A11) 

Comparing (A11) with the series expansion of the actual mean, it is clear that the difference 
between the mean after Sigma Point Transform and that of the actual mean just lies in the 
third and the following terms. 
Similarly, the expression of the posterior covariance after the Sigma Point Transform can be 
written 
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        (A12) 

A comparison with the expression of the actual covariance shows that there exists a better 
coincidence between the acquired covariance through Sigma Point Transform and that of the 
actual covariance, with the difference included in the fourth and higher terms. 
From the above description it can be concluded that the Sigma Point Transform provides a 
better approximation to the true statistical properties. 
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