Ontology-based Verification of Core Model Conformity in Cadastral Modeling

Claudia Hess, Christoph Schlieder

Conference “Standardization in the Cadastral Domain”
Bamberg, Germany
December 09-10, 2004
Agenda

1. Information Technology and Standardization
2. Conformity Verification for the Cadastral Domain
3. A Worked Example
4. Conclusions
Information Technology

- **Standard software for cadastral systems?**
 - Currently, cadastral systems are custom-made technology
 - Standard software is state-of-the-art in other application domains:
 - Enterprise Resource Planning (ERP) systems
 - ERP run worldwide despite differences in IT infrastructure, data and process models, national legislation

- **Conformity verification**
 - Technology that supports data and process modeling
 - Basis for cadastral systems as customizable standard software
Cadastral Standardization

- A common misunderstanding
 - Standardization does NOT aim at having a single cadastral system running in all countries.
 - The purpose of standardization consists in identifying common structures in cadastral data and process models.
 - and to exploit them for building software components for customizable standard software.

- Data and process modeling
 - Development of a core cadastral data and process model
 - National models as extensions of the core cadastral model
To ensure interoperability, every cadastral system should implement concept X.

I found concept X in all cadastral systems I looked at so far.

Core Cadastral Domain Model

Core Modeler (TU Delft, ITC)
I modeled concept Y to match concept X of the core cadastral model.

I understood concept X in the following way.

Domain Modeler
(Greek Cadastre)
Conformity Verification

Core Model

Conceptual Conformity Checker

CCC

Domain Model

Conformity Intentions

Modeling Intentions

Hess, Schlieder: Ontology-based Conformity Verification
Agenda

1. Information Technology and Standardization
2. Conformity Verification for the Cadastral Domain
3. A Worked Example
4. Conclusions
Iterative Modeling Process

Core Model: Formalization of Conformity Intentions

Domain Model: Formalization of Modeling Intentions

Reasoning support by CCC:
- Necessary Modifications
- Inconsistencies
- Satisfaction of Constraints

Conformity
Data Modeling Technologies

- Technology generations
 - Entity-Relationship Models
 - Object-oriented Modeling (UML and literate UML)
 - Ontological Modeling

- Ontological modeling?
 - Enhanced expressiveness
 - Reasoning support

International Committee for Documentation of the International Council of Museums (ICOM-CIDOC)

1994 Entity relationship model
2002 Object-oriented model
2004 Formal ontological model
Ontological Modeling

XMI + text

```xml
<UML:Class xmi.id = 'a15' name = 'Person'
    visibility = 'public' isSpecification = 'false'
    isRoot = 'false' isLeaf = 'false' isAbstract = 'false' isActive = 'false'>
    ...
    <UML:Attribute xmi.id = 'a373' name = 'tmin' visibility = 'private' isSpecification = 'false'
        ownerScope = 'instance'>
        ...
    </UML:Attribute>
    ...
</UML:Class>
```

OIL

```xml
<daml:Class rdf:about="#Person" rdfs:label="Person"> ...
    <daml:Restriction>
        <daml:onProperty>
            <daml:DatatypeProperty rdf:about="#Person_tmin"/>
        </daml:onProperty>
        <daml:hasClass rdf:resource="http://www.w3.org/2000/10/XMLSchema #date"/>
        <daml:disjointUnionOf rdf:parseType="daml:collection">
            <daml:Class rdf:about="#NaturalPerson"/>
            <daml:Class rdf:about="#NonNaturalPerson"/>
        </daml:disjointUnionOf>
    </daml:Restriction>
    ...
</daml:Class>
```

"Each Person is either a NaturalPerson or a NonNaturalPerson. No Person can be a NaturalPerson and a NonNaturalPerson."
Generic Mapping Relations

- **Modeling workflow**
 - Correspondences are identified by domain experts
 - Small set of generic mapping relations

- **Correspondences**
 - Classes
 - Attributes
 - Classes and attributes

- **Heterogeneity problems**
 - Structural heterogeneity: Semantically equivalent information is stored in different data structures
 - Semantic heterogeneity: Different interpretation of syntactically the same information
Correspondence in OIL

- Correspondence between attributes: `daml:samePropertyAs`

```xml
<daml:ObjectProperty
    rdf:about="core_cad.daml#Person_SubjID"
    rdfs:label="Person_SubjID">
    <daml:domain rdf:resource="core_cad.daml#Person"/>
    <daml:range rdf:resource="core_cad.daml#oid"/>
    <daml:samePropertyAs rdf:resource="#Greek_cad.daml#BENEFICIARY_BEN_ID"/>
</daml:ObjectProperty>
```
Types of Correspondence

- **Reasoner**
 - determines type of the identified correspondence by ontological reasoning

- **Types**
 - Equivalence
 - Subsumption
 - Overlapping

- **Special Cases**
 - Restriction of the range of an attribute
 - Co-extensional concepts without corresponding attributes
 - Corresponding packages
Query and Interpretation

<table>
<thead>
<tr>
<th>Type</th>
<th>Query to RACER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence</td>
<td>concept-equivalent?</td>
</tr>
<tr>
<td>Subsumption</td>
<td>concept-subsumes?</td>
</tr>
<tr>
<td>Overlapping</td>
<td>Create new class + concept-satisfiable?</td>
</tr>
</tbody>
</table>

Example:
(concept-equivalent?
|core_cad.daml#Person||Greek_cad.daml#BENEFICIARY|);

...

Result: True or false

Interpretation: The classes Person and BENEFICIARY are, according to the identified correspondences, overlapping.

Is this type of correspondence sufficient?
Agenda

1. Information Technology and Standardization
2. Conformity Verification for the Cadastral Domain
3. A Worked Example
4. Conclusions
1st Iteration: “Person”-Classes

Corresponding Person-Classes must be in every cadastral model.

Core Modeler

Core Model

Greek Model
1st Iteration: Results of the Reasoner

- Correspondences only of the overlapping type:
 - Person – BENEFICIARY
 - NaturalPerson – BENEFICIARY
 - NonNaturalPerson – BENEFICIARY

- No relation between the specialization classes

- No corresponding attribute for
 - t_min and t_max (class Person)
 - BEN_TYPE (class BENEFICIARY)
2nd Iteration: Proposed Modifications
2nd Iteration: Results of the Reasoner

- Person and BENEFICIARY are equivalent
 - Temporal aspects must be either added to the class BENEFICIARY or omitted in the class Person!
- Equivalence between the specialization classes:
 - NaturalPerson equivalent with NATURAL,
 - NonNaturalPerson equivalent with LEGAL.
Agenda

1. Information Technology and Standardization
2. Conformity Verification for the Cadastral Domain
3. A Worked Example
4. Conclusions
First results

Evaluation of the example
- Poor results of the first iteration due to the limited number of formalized correspondences
- First iteration provides advice for the subsequent iteration
- Results of the 2nd iteration must be evaluated by domain experts

Next steps
- Refinement of the correspondences between core and Greek cadastral model
- 2nd iteration with all refined correspondences
- Elaboration of the attribute-level of core and domain models
Conclusions

- Improved conformity between the models
 - Resoner results provide useful advice for subsequent iterations
 - Iterative refinement of the correspondences

- Difficulties in the models are revealed
 - Need for discussing core and domain models
 - Core and domain models at the same level of abstraction

- Conforming models as basis for new applications
 - Exchange of cadastral data
 - Development of customizable standard software

- Future research
 - Conformity verification is not restricted to the cadastral domain
 - Extension of the conformity verification to process models