Simple Model for Improving the Accuracy of the Egyptian Geodetic Triangulation Network Prof. Dr. Eng. Abd-Allah Ahmed Saad

Dr. Eng. Mona Saad Elsayed

Problem Definition

□ The recent applications such as plate boundary, earthquakes, determination, studying the sea surface topography and its variation with time, the computation of the orbits of the artificial geodetic earth satellites, and improving the knowledge of the earth's gravity field require very high accuracy for the network coordinates.

T	Methodology
∂φ	= $(\cos\varphi_{i,p} \cos\varphi + \sin\varphi_{i,p} \sin\varphi)$
cos	$s\Delta\lambda)\partial\varphi_{i,p} - (\sin\varphi \sin\Delta\lambda \cos\varphi_{i,p})\partial\lambda$
i.p ⁺	$(\sin\varphi_{i,p}\cos\varphi - \cos\varphi_{i,p}\sin\varphi \cos\Delta\lambda) ((\delta h)$
/ a)	$(\delta a / a) + \sin^2\varphi_{i,p} + 2\cos\varphi)$
(sir	$a\varphi - \sin\varphi_{i,p} \delta f$
cos	$s\varphi \partial\lambda = (\sin\varphi_{i,p} \sin\Delta\lambda) \partial \varphi_{i,p} + 1$
(co	sΔλ $\cos \varphi_{i,p}$) $\partial \lambda_{i,p}$ - [($\cos \varphi_{i,p}$
sin	Δλ)*(δh / a) + (δa / a) + sin2 $\varphi_{i,p}$ *δf)]

Method	ology
Where :	
• φ and λ : the latitude point to be shifted in the	and longitude of the ne old datum.
• $\phi_{i,p}$ and $\lambda_{i,p}$ are the lattice the initial Point in the c	atitude and longitude of old datum
• $\delta \phi_{i,p} = \phi_{i,p \text{ new}} - \phi_{i,p \text{ old}}$ • $\delta a = a_{new} - a_{old}$	$\delta \lambda_{i,p} = \lambda_{i,p \text{ new}} - \lambda_{i,p \text{ old}}$ $\delta f = f_{new} - f_{old}$

point	Azimuth (Deg)	Dist (km)	Latituc	le Residu	als (m)	Longitu	de Resid	uals (
Solution Points	-		1 st order	2 nd order	3 rd order	1 st order	2 nd order	3n ord
01	161	19.8	0.26	-0.02	-0.01	-1.32	0.01	0.0
A2	186	112.0	-0.64	-0.01	0.03	-1.12	-0.14	-0.0
L2	193	209.5	-0.34	0.09	-0.06	0.20	0.15	0.0
S2	194	298.6	0.16	-0.06	0.04	0.71	-0.12	-0.0
A3	180	306.7	0.66	-0.09	-0.03	0.98	0.21	0.0
M3	169	459.5	0.66	0.17	0.01	1.06	-0.10	-0.0
A4	164	505.0	-0.04	0.06	0.06	1.06	-0.03	-0.0
A5	167	681.1	-0.84	-0.27	-0.17	0.59	0.17	0.2
E5	168	747.2	-0.71	0.10	0.09	-0.06	-0.02	-0.1
L5	176	808.2	0.11	-0.01	0.07	-0.53	-0.33	-0.1
05	178	843.2	0.27	0.01	0.06	-0.51	-0.07	0.0
Q5	179	859.5	0.20	-0.14	-0.10	-0.55	-0.01	0.0
R5	178	877.9	0.25	0.17	-0.01	-0.51	0.29	0.0
Abs sum		_	4.68	1.2	0.74	9.2	1.65	0.9
lavgi		-	0.36	0.09	0.06	0.70	0.12	0.0
Stdv	_		0.25	0.07	0.04	0.36	1.14	0.0

point	Azimuth (Deg)	Dist (km)	Latitude Residuals (m)			Longitu	ide Resid	uals (I
Check			1 st	2 nd	3 rd	1 st	2 nd	3rd
B3	182	299.7	0.75	0.05	0.20	0.90	0.17	-0.0
B4	165	504.7	-0.13	-0.14	-0.18	0.80	-0.30	-0.3
P4	165	672.0	-0.91	-0.10	0.07	0.77	0.35	0.3
Y5	178	867.1	0.22	0.08	-0.02	-0.52	0.17	0.0
Abs sum	_		2.01	0.37	0.47	2.99	0.99	0.6
lavgl			0.50	0.09	0.11	0.74	0.24	0.1
Stdv			0.33	0.03	0.07	0.13	0.07	0.14

noint	Azimuth	Dist	Latitude Re	siduals (m)	Longitude R	<mark>esiduals (</mark> m
Solution	(Deg)	(KIII)	1 st order	2 nd order	1 st order	2 nd orde
F6	70	17.3	0.39	0.01	0.90	0.17
01	161	19.8	0.52	-0.03	0.80	-0.30
E7	252	68.7	0.37	0.10	0.77	0.35
A6	85	128.4	-0.82	0.00	-0.52	0.17
N7	279	140.3	-0.31	-0.16	2.99	0.99
D8	292	242.4	-0.40	0.09	0.74	0.24
X8	290	427.9	-0.36	-0.02	0.13	0.07
Z9	285	584.3	0.61	0.00	0.90	0.17
Abs sum			3.78	0.41	0.80	-0.30
lavgl			0.47	0.05	0.77	0.35
Stdv		_	0.02	0.00	-0.52	0.17

