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ABSTRACT

Reliability of the conventional deformation analysis methods is defined with mean success
rate. The mean success rate is given as the number of successes divided by the number of
experiments. Four different vertical networks are generated by simulation. The observations
for two epochs and deformations are also generated. The mean success rates of the methods
are computed for certain number of deformed points, for a given interval and for kinds of
deformation. Consequently, the reliability of the methods changes depending on number of
points, magnitude of deformations, degrees of freedom and number of deformed points. The
reliability of the methods increases when the degrees of freedom and the magnitudes of
deformations increase. It decreases when the number of points and the number of deformed
points increase. As known, the random errors’ variances are changing depending on the
distance of the levelling lines. This Gauss-Markov model is called as heteroscedastic. If the
distances are approximately equal to each other, the random errors have a common variance.
So, the model is called as homoscedastic. If the model is homoscedastic, the reliability of the
analysis methods increases very rapidly with respect to the ones of the heteroscedastic model.
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1. INTRODUCTION

One of the main aims of geodesy is detection of the deformations imposed on an object or an
area which is characterized with points of a geodetic network. Since it is essential to detect
deformations for many purposes (monitoring plate tectonics, determination of global datum,
taking precautions for a construction which may be under damage, etc.), many considerable
efforts and investigations have been performed on deformation analysis (Chen 1983;
Chrzanowski et al. 1982; Liu and Chen 1998; Niemeier 1985; Pelzer 1971; Welsch et al.
2000).

Conventionally, for all types of networks (vertical, horizontal or 3D networks), for detecting
deformations, same points’ estimated coordinates obtained from least-squares adjustment of
observations made at different epochs are compared with each other by using the statistical
tests. Therefore, this procedure is called as conventional or geometrical analysis which
comprises global congruency test and localization steps (Welsch and Heunecke 2001).
Although it is also used widely to verify stabilities of some points (to define reference points)
or instabilities of others, it is not known exactly that if it gives correct results in all probable
cases or which situations may increase its reliability according to imposed deformations. To
get information about reliability of the method, true deformations must be known in advance.
However, in real cases, it is not entirely possible to estimate what deformation magnitudes
are imposed on which points. For that reason, some authors use simulation that creates
probable cases in model to find some methods are effectual (Betti et al. 1999; Liu and Chen
1998).

In this study, we investigated how reliability of the conventional deformation analysis
methods can be measured and how it changes for the vertical networks. Therefore, we
adapted the reliability concept introduced by Hekimoglu and Koch (1999; 2000) to the
conventional deformation analysis. The reliability is defined as a mean success rate obtained
from number of success divided by the number of experiments to identify outliers. In this
concept, we put the deformations instead of outliers. For this purpose, we simulated four
vertical networks. In the vertical networks, the random errors’ variances are changing
depending on the distance of levelling lines. So, the Gauss-Markov model is called as
heteroscedastic in robust statistics (Carroll and Ruppert 1982; Hekimoglu and Berber 2001).
We know that if the heteroscedasticity is strong, it affects on the reliability of robust
estimators badly (Hekimoglu and Berber 2001). Therefore, for the vertical networks’
observations, we considered two random error types: heteroscedastic and homoscedastic.
Then, simulated deformations for the vertical networks are added to certain number of points’
heights at present epoch. They are defined for different kinds and a given interval of
deformation. After the deformed points detected separately with using two localization
methods (Gauss Elimination and Implicit Hypothesis) are compared with known deformed
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points, the mean success rates of these methods are obtained for the vertical networks.

2. CONVENTIONAL DEFORMATION ANALYSIS

In the conventional deformation analysis (CDA), the deformations are accepted as significant
geometrical differences verified with statistical test, i.e., F-test. So, detection of the
deformations basically depends on comparison of geometry of the geodetic networks
observed at different epochs, e.g., initial and present epochs (Welsch and Heunecke 2001).

2.1 Free Adjustment of the Vertical Deformation Networks

In order to remove geodetic datum deficiency, heights and their cofactor matrix of each
epoch of the vertical network are computed individually by free adjusment method. All of the
heights of the network are incorporated to the model as unknowns. So, the Gauss-Markov
model can be expressed as (Koch 1999)

kkkk lxAv −= , (1)

1
lk k

−= QP , (2)

where k is the number of epochs, kv  is the n×1 residual vector, kA  is the n×u design matrix,
kx  is the u×1 unknown vector, kl  is the n×1 observation vector, kP  is the n×n diagonal weight

matrix of observations, 
klQ  is the n×n weight coefficient matrix of the observations, u is the

number of unknowns (equal to number of points in vertical networks), n is the number of
observations. When the conditions minkk

T
k =vPv , mink

T
k =xx  are satisfied, estimated

unknown vector can be formulated as

kk
T
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kk
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where 
kk x̂x̂Q is the cofactor matrix of estimated unknowns,
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APAQ , (4)

where +)( kk
T
k APA  is the pseudo inverse of the normal equation (Koch 1999; Teunissen

1985). The estimated variance factor as fallows:
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where kf  is the degrees of freedom. If the two epochs’ estimated variance factors are equal to
each other statistically, the pooled variance factor is written by
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2.2 Global Congruency Test

Whether the difference between the estimated unknown vectors for two epochs is the result of
the deformations or random errors of the observations is investigated with global congruency
test. For this aim, expected values of the estimated unknown vectors are assumed equal to
each other by the following null-hypothesis

{ } { }210 ˆ Eˆ  E : H xx = . (7)

The influence of the hypothesis can be expressed as

dQd  R dd
T += , (8)

where d is the difference vector of the estimated unknown vectors

12 ˆˆ xxd −= , (9)

ddQ  is the its cofactor matrix,

2211 x̂x̂x̂x̂dd QQQ += . (10)

If the null-hypothesis is true, the test quantity GT  follows the central F-distribution,

2
0

G sh 
RT =  ∼  f ,h F , (11)

where h is the rank of ddQ . If α−≥ 1 f, h,G FT  ( α−1  is confidence level), the null hypothesis is
rejected. In other words, the difference is accepted as a result of deformation. Therefore, the
next step is localization of deformations.

2.3 Localization of Deformations

Among the many localization methods presented in Welsch et al. (2000), Gauss elimination
and implicit hypothesis methods are reviewed below.

2.3.1 Localization with Gauss elimination

The difference vector d and +
ddQ  are divided into sub-vectors and sub-matrices as follows

(Niemeier, 1985; Welsch et al. 2000)

�
�
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d    ,    �
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�

�
=+

BBBF

FBFF
dd PP

PP
Q , (12)

where index B describes assumed deformed point BP , index F is for the other points. To
distinguish independently the effect of the point BP  on R in (8), the following equation is
obtained by using Gauss elimination method

FBF
1

BBBB   dPPdd −+= . (13)
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So, the partial effect of BP  on quadratic form R is given by

BBB
T
BB   R dPd= . (14)

Sequentially, each point is considered as deformed point. The point which gives maximum
BR  is accepted as deformed point and it defines the current datum. To test whether remaining

points are deformed, d  and ddQ  is transformed into the current datum with using
S–transformation (Teunissen 1985)

dSd  ii =    ,   T
iddidd   

ii
SQSQ =   ,  ( u , 2 , 1i �= ) . (15)

Using elements related to the remaining points in (15), the new global congruency test is
applied. The same localization procedure is performed until the test can not verify existence
of deformation any more. As a result of the localization, deformed points are detected.

2.3.2 Localization with implicit hypothesis

Some points’ estimated unknowns are considered stable for two epochs by the null-
hypothesis (Welsch et al. 2000)

{ } { } F2F1F0 ˆˆEˆE :H xxx == . (16)

The hypothesis is included into the following observation equation implicitly
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where 1Bx̂  and 2Bx̂  are unknown vectors related to assumed as the deformed point. The
influence of the hypothesis can be expressed as

)(  R 22
T
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T
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HI vPvvPvvPv +−= , (18)

where ) ,  ( diag 21 PPP = . The point i that gives minimum IR  is defined as the deformed point.
For the new global test, the minimum value of IR  and degrees of freedom )1h(h min −=  are
used. If the test quantity is greater than α−1 , f ,h min

F , the observation equation (17) is augmented
as fallows:
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where 1ix̂  and 2ix̂  are unknown vectors of point i obtained as deformed from previous
localization. Its location in the model is not changed until the end of the procedure.
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3. THE RELIALIBITY CONCEPT: THE MEAN SUCCESS RATE

The reliability concept is defined as the mean success rate which is obtained by number of
success divided by the number of experiments to identify outliers (Hekimoglu and Koch
1999). We adapt this concept to the CDA with the aim of obtaining its reliability.

Vertical deformations occurs as uplift or subsidence. In other words, the signs of the
deformations are plus or minus. Therefore, random and influential deformations are used and
called as kind of deformations. Random deformations (RD) have signs selected randomly,
while influential deformations (ID) have the same signs, i.e., only all plus or all minus.

If a point is translated as id
~  ( u , 2 , 1i �= ) in vertical direction between initial and present

epochs, u×1 vertical deformation vector d~  and the set of deformed points M can be expressed
as

=d~ [ 0  0d
~

 0  0 i �� ] T , (20)

{ } 0,0i0,0, M ��=  . (21)

It is considered that the magnitute of id
~  lies in the interval (int) as fallows:

int = aσ< id
~  < bσ   ,  ab and ba 3,a >≠≥ , (22)

where 2σ  is the variance of unit weight. So the initial and present epoch’s observation vectors
are written as

0111  HAehl −+= , (23)

02222  
~
 HAdAehl −++= , (24)

where h is the true height differences vectors, 1e  and 2e are n×1 normal distributed random
error vectors and 0H  is the vector of approximate heights of points. Both observation vectors

1l  and 2l  constitute a working sample.

If the set M is equal to the set of detected points LM  from one of the localization methods
that use the estimated unknown vectors and cofactor matrices from 1l  and 2l , the method was
considered as successful.

According to the generating different random error vectors ( 1e , 2e ) and different deformation
vector d~ , we can produce many working samples. When the deformation vector d~  contains

dn  (1 ≤ dn  < u) number of deformation of any kinds with any magnitudes in the given
interval, we can define the mean success rate as fallows (Hekimoglu and Koch 2000)

�
=

=γ
N

1s
d21

r
mean N

q)u,n,nint, , , ,L( ll , (25)
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where r is the deformation kind, L is the localization method, q is the number of success, s
denotes a certain working sample, N is the number of working samples. Thus, the different
mean success rates for the different deformation kinds can be computed. The smallest one of
them is accepted here as the reliability of the CDA for a certain number of deformation and
for a given interval (int):

{ } 2 ,1r , )u,n,nint, , , ,L(  minimum)u,n,nint, , , ,L( d21
r

d21 =γ=γ llll . (26)

4. SIMULATION

In order to obtain the reliability of the CDA for vertical application areas, we simulated four
vertical networks as shown in Figure 1a-d. Number of observations, number of unknown
parameters and degrees of fredoom for free networks are given in Table 1.

Table 1. Number of observations, number of unknown parameters, degrees of freedom for vertical
networks

Network I II III IV
Number of observations (n) 36 27 19 15
Number of unknown parameters (u) 16 16 8 8
Degrees of freedom (f) 21 12 12 8

4.1 Generating of Simulated Deformations

a) Random deformations (RD): The magnitude of id
~  of one deformation is generated by

the uniform distribution for a given interval as fallows:

int = σ<<σ bd
~

a i , (27)

0i1ii d
~
 )sign(td

~
=    , ( u , 2 , 1i �= ), (28)

1t0  ,  
5.0t
5.0t

)t(sign 1i
1i

1i
1i ≤<

�
�
�

�
�
�

≤−
>+

= , (29)

)a(btad
~

1ii0 σ−σ+σ= , 2i tui =   ,  1t0 2i <<   ,  3a ≥  , ab > , (30)

where i1t  and 2it  are distributed uniformly (Hekimoglu and Koch 1999; 2000). This
algorithm has been computed 2500 times for each working sample in (23) and (24).

The magnitudes id
~ , jd

~  of two deformations, and etc. are generated correspondingly by the
uniform distribution.

We used the three intervals for the magnitutes of deformations as follows: 3σ−6σ, 3σ−10σ,
10σ−50σ.

b) Influential deformations (ID): ID’s magnitudes are generated also by the uniformed
distributions for a given interval as done for the RD. Only they all have the same sign, i.e., all
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plus or all minus.

Fig. 1a-d.  Configurations of simulated networks: a Network I, b Network II, c Network III, d
Network IV

4.2 Observations

If random errors are independent and identically distributed (iid), the Gauss-Markov model is
called as homoscedastic in robust statistics (Carroll and Ruppert 1982). However, the random
errors’ variances in vertical networks are changing depending on distance levelling lines. The
model is called as heteroscedastic (Carroll and Ruppert 1982; Hekimoglu and Berber 2001).
To investigate the effect of these concepts on the CDA, we produced two types of random
errors of observations for the networks as follows.

a) Random errors are heteroscedastic (Type 1)

We produced random error vectors with normal random error generator in MATLAB v.5.1
software for one initial and present epochs as fallows:

=ke [ nk2k1k e  e  e � ] T ,    2 , 1k = , (31)

where jke  ( n), , 2 , 1j �=  comes from the different normal distributions

N( )L   0, j
22

jkjk σ=σ=µ , km 1  / mm 1=σ  is standart deviation and jL  is the distance of
levelling line. Then, the observation vectors 1l  and 2l  are obtained by using (23) and (24).
For stochastic model, we selected the distance of levelling lines in the interval of 0.92−3.55
km. Two epoch’s observations distances are the same, so the weight matrices of observations
are equal to each other as follows:

)L/L ,  , L/L  , L/L ( diag n0201021 �== PP , (32)

where 0L  is the unit distance (1km) of levelling line.
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b) Random errors are homoscedastic (Type 2)

In this type, the distances of levelling lines are chosen the same for all the networks, i.e.,
=jL 1 km. So, random errors of the observations come from the same distribution and are

independent, i.e., the model is homoscedastic.

4.3 Analysis

To obtain a mean success rate of the CDA for a given magnitude interval, a deformation kind
and dn  number of deformed point in a vertical network, we produced randomly 2500
different working samples by applying mentioned above procedures. Then, the observation
vectors of two epochs were free adjusted individually using the same design matrices and the
same weight matrices for two epochs in the vertical network. All the estimated variance
factors for the working samples are approximately equal to 1 mm as expected, because there
are not any ouliers in the observations. The model test which checks the null hypothesis

:H0 E{ 2
01s } E= { 2

02s } was applied to the samples to verify whether they were used for the
deformation analysis (%95 confidence level is here used for all statistical tests).

We used two localization methods for checking the results obtained from them. Applying
both methods, we computed the mean success rates according to (25).

5. RESULTS

The same results were obtained from two localization methods performed to the same
working samples. Therefore, the results from one of two methods are presented only as the
mean succes rate of the CDA.

First, to obtain whether the CDA produces deformations for the networks, we used 2500
samples which do not have any deformations. As shown in Table 2, the analysis may produce
deformations with the rate of %6.3 on the average.

Table 2. The mean succes rates in the case of no added deformations for the vertical networks
Network type 1 2
Network number I II III IV I II III IV
The mean succes rates 6.7 6.0 6.3 6.8 6.3 6.2 5.8 5.9

5.1 The Vertical Networks of the Type 1

The results of the mean success rates for Type 1 are shown in Table 3 and Table 4. The mean
success rates under the 51% are shaded in tables to compare them with the others easily.



TS6.5 Deformation Measurement and Analysis III
Serif Hekimoglu, Hüseyin Demirel and Cüneyt Aydin
Reliability of the Conventional Deformation Analysis Methods for Vertical Networks

FIG XXII International Congress
Washington, D.C. USA, April 19-26 2002

10/13

5.1.1 For random deformations

In the networks I, II, III and IV, the mean success rates are decreased while the number of
deformed point dn  is increased for all of the intervals. For the interval of 10σ−50σ, the mean
success rates are quite bigger than the ones for the intervals of 3σ−6σ and 3σ−10σ. The
networks I and II have the same number of points, but different degrees of freedom. For the
intervals of 3σ−6σ and 3σ−10σ, the mean success rates of the network I are bigger than the
ones for the network II since the degrees of fredoom are increased.

The networks III and IV have the same number of points, but different degrees of freedom.
For the intervals of 3σ−6σ and 3σ−10σ, the mean success rates of the network III are bigger
than the ones which are obtained for network IV because of the increasing of the degrees of
freedom.

Moreover, the networks II and III have different number of points, but the same degrees of
freedom. Although the number of observation of the network III is smaller than the ones of
the network II, the mean success rates of the network III are larger than the ones of the
network II for the interval of 3σ−6σ and 3σ−10σ for dn ≤ 5.

5.1.2 For influential deformations

The mean success rates were obtained for only all plus (uplift) and only all minus
(subsidence) deformations. The features of the mean success rates gained for RD are the
same for ID. However, the mean success rates are decreased related to the ones that are
computed for the RD when dn >2. The results of ID were not given in Table 3 and 4.

Table 3. The mean success rates for RD in the networks I and II (Type 1)
Number of Deformed Points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Magnitude

of
deformation                                                    NETWORK I (n=36, u=16 , f=21)

3σ-6σ 65.2 46.8 37.8 30.8 24.3 19.4 15.3 11.2 8.0 4.6 2.5 1.4 0.6 0.1 0

3σ-10σ 82.3 68.4 63.0 55.8 51.6 43.6 40.8 31.9 26.3 18.6 12.6 7.7 3.6 0.7 0

10σ-50σ 94.8 93.3 93.7 93.6 93.6 92.8 90.2 86.1 79.0 65.7 52.4 35.8 20.6 7.2 0.3
                                                    NETWORK II (n=27, u=16 , f=12)

3σ-6σ 47.9 30.3 20.5 16.3 11.8 8.6 6.4 4.1 3.0 1.8 1.0 0.5 0.1 0.1 0

3σ-10σ 71.0 56.3 47.6 37.6 30.0 27.3 23.2 17.9 12.4 9.4 5.8 3.0 1.7 0.4 0

10σ-50σ 94.0 94.1 93.8 93.9 93.2 90.2 87.2 82.0 73.8 60.6 49.2 35.1 21.3 10.0 0.2

Table 4. The mean success rates for RD in the networks III and IV (Type 1)
Number of Deformed Points

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Magnitude

of
deformation NETWORK III       (n=19, u=8 , f=12) NETWORK IV       (n=15, u=8 , f=8)

3σ-6σ 78.2 65.8 56.3 44.2 21.9 3.7 0 66.1 48.8 38.4 26.0 12.9 2.9 0

3σ-10σ 88.0 81.3 75.2 66.4 44.7 13.2 0.1 82.3 69.8 62.8 49.1 31.7 11.4 0.2

10σ-50σ 94.9 93.3 94.9 90.4 75.4 32.6 1.1 93.9 94.8 92.8 85.0 67.4 34.8 1.7
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5.2 The Networks of the Type 2

The mean success rates for Type 2 are shown in Table 5 and Table 6. The mean success rates
under the 51% are shaded in tables to compare them with the others easily.

5.2.1 For random deformations

The mean success rates for 3σ−6σ and 3σ−10σ are quite bigger than the ones that were
obtained from the Type 1. As seen the results from Table 5 and Table 6, the features of the
mean success rates obtained for the networks of Type 1 are the same for Type 2.

5.2.2 For influential deformations

The mean success rates for 3σ−6σ and 3σ−10σ are bigger than the ones that were achieved
from the Type 1. The results of ID are not presented in Table 5 and 6.

Table 5. The mean success rates for RD in the networks I and II (Type 2)
Number of Deformed Points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Magnitude

of
Deformation                                                    NETWORK I (n=36, u=16 , f=21)

3σ-6σ 84.2 78.1 74.4 69.2 63.0 59.7 53.2 44.8 36.1 21.9 13.2 6.6 2.3 0.6 0

3σ-10σ 90.8 87.6 83.4 82.7 79.3 76.3 71.2 65.8 55.2 41.9 27.6 18.6 8.6 2.6 0

10σ-50σ 93.4 93.7 94.6 93.9 93.1 93.0 91.7 88.2 82.1 70.0 53.7 38.6 20.8 8.0 0.2
                                                     NETWORK II (n=27, u=16 , f=12)

3σ-6σ 73.7 61.6 52.5 45.3 39.9 35.0 27.4 23.6 16.5 10.4 6.4 3.6 1.3 0.2 0

3σ-10σ 84.2 77.8 72.3 67.3 61.4 55.9 52.9 43.8 37.3 27.8 17.0 10.8 5.9 1.8 0

10σ-50σ 94.4 93.0 94.2 94.6 92.6 90.5 88.7 82.4 75.0 63.7 49.9 34.8 20.2 7.9 0.1

Table 6. The mean success rates for RD in the networks III and IV (Type 2)
Number of Deformed Points

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Magnitude

of
Deformation NETWORK III       (n=19, u=8 , f=12) NETWORK IV      ( n=15, u=8 , f=8)

3σ-6σ 91.1 88.1 86.4 77.0 43.0 8.2 0 83.6 76.5 69.9 54.1 30.4 7.9 0.2

3σ-10σ 92.4 90.6 91.3 85.4 62.8 19.3 0.5 90.6 86.6 81.7 71.8 47.8 18.9 1.0

10σ-50σ 94.0 94.4 94.6 93.8 78.8 34.0 1.2 93.6 93.5 94.0 88.4 71.4 35.0 2.4

6. CONCLUSION

In this paper, we pointed out that the reliability of the conventional deformation analysis for
the vertical networks can be measured by using the mean success rates. The reliability of the
CDA changes depending on the many factors, such as, the number of unknowns, the degrees
of freedom, the number of deformed points, the magnitudes of deformation, the deformation
kinds (RD and ID), especially types (heteroscedasticity or homoscedasticity) of the random
errors. According to the results of the numerical simulations, if the degrees of freedom and
the magnitudes of the deformations increase, the reliability of the CDA increases. On the
contrary, when the number of unknowns, number of deformed points increase, the reliability
of the CDA decreases. Furthermore, if the random errors come from the same normal
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distribution, i.e., the model is homoscedastic, much more reliable results are obtained from
CDA.

When the points have vertical deformations whose magnitudes are bigger than approximately
10σ, CDA’s reliability is high in all vertical networks used in this paper. If the magnitudes
are smaller than 10σ, the reliability of the CDA’s starts decreasing rapidly. However, this
decreasing rate in the mean success rates of Type 1 is bigger than the ones that in Type 2.

Although vertical network II and network III have the same degrees of freedom, the number
of unknowns of network III are smaller than network II. When the mean success rates of
these networks are compared with each other, the ones of network III are bigger than the ones
for network II. It can be interpreted that the number of points must be small to get more
reliable results.

Consequently, the reliability of the CDA may increase very much if the points of a vertical
network are established, so that the distances of levelling lines are approximately equal to
each other. Moreover, in this network, when the assumed number of deformed points and
especially the number of points are taking small, the reliability of the CDA increases. So,
even if the deformation magnitutes of the points are smaller than approximately 10σ, more
reliable results may be obtained since the Gauss-Markov model is homoscedastic.
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