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SUMMARY  

Dams are widely used for energy production and need to be inspected to ensure their stability 

and most importantly security. So far, the inspection within dam galleries is done periodically 

in a manual manner, thus making it time-consuming, labor-intensive, and subjective. 

Alternatively, automated inspections can be challenging due to the narrow galleries, sparse 

lighting, and texture of the concrete. This paper presents a case study on data acquisition and 

evaluation of three different sensors concerning data suitability for automated crack detection 

within such environments. The evaluated sensors in this study are Leica mapping system 

BLK2GO, the Lumix digital single-lens mirrorless (DSLM) camera DMC-FZ2000, and the time-

of-flight depth camera Helios Lucid. The measurements and data acquisition were done using 

a mobile robotic platform in a 220 m long dam in the Swiss Alps. 

 

This paper proposes a data evaluation pipeline for the extraction of georeferenced cracks. The 

processing outcomes are critically analyzed in terms of geometric and prediction accuracies, 

the repeatability of the predicted cracks, as well as the economic aspects of proposed 

measurement solutions. For the crack detection, different methods based on convolutional 

neural networks (CNN) were assessed using the datasets acquired with the three sensors. The 

DSLM images showed the best outcome due to their highest resolution, allowing the detection 

of cracks wider than 1 mm. Furthermore, an approach for locating cracks within the 3D digital 

model of the dam was proposed. For this georeferencing task, two approaches are presented, 

namely the BLK2GO trajectory and the photogrammetric model obtained from the DSLM 

images. Ultimately, the findings indicate that using a combination of sensors outperforms stand-

alone solutions, i.e., a combination of the DSLM for the acquisition of images georeferenced 

based on the BLK2GO trajectory. This paper is a contribution toward inspection task automation 

within industrial environments using digital sensing and robotic technologies. 
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1 INTRODUCTION 

To ensure the stability of dams, the inspection of cracks and their shape changes over time have 

to be carried out periodically every few years. So far, this activity is still done manually by 

skilled professionals, who walk through the galleries and annotate cracks and their changes over 

time. This is time-consuming, labor-intensive, performed in challenging work conditions, and 

involves the subjectivity of a skilled professional. Therefore, finding an automated sensor-based 

alternative is of high interest. Until now, a few approaches for automated inspection employing 

mobile platforms and sensors were published in the literature. E.g., Gehring et al. [1] proposed 

to use a mobile platform carrying different sensors to perform inspection of an offshore 

platform. Phung et al. [2] conducted bridge inspection using a 3D model of the bridge for the 

pathfinding of a camera-equipped unmanned aerial vehicle (UAV). Khaloo et al. [3] proposed 

using a photogrammetric model created from images taken by a manually controlled UAV 

equipped with a camera to detect flaws and defects on the outside of a gravity dam. The work 

of Sarker et al. [4] focused in particular on the suitability of depth cameras for crack detection. 

This published work indicates that there is a strong interest in automating such inspections, 

however according to author's knowledge the potential is not yet fully exploited and further 

developments are needed, as will be presented in this contribution. 

We made use of the following three sensors, namely the Leica mapping system BLK2GO [5], 

the Lumix system camera DMC-FZ2000 [6], and the Lucid depth camera Helios Time of Flight 

3D camera [7] for data collection in a dam environment. The sensors were mounted on a 

wheeled robot to allow for autonomous inspection. This paper proposes a workflow taking in 

as an input the data collected with sensors, i.e. images and point clouds, which results in 3D 

coordinates of detected cracks. Within this study, two different convolutional neural networks 

(CNN) are tested to automate the crack detection.  

The focus of this paper is on assessing the suitability of the three sensors for the inspection of 

galleries of large dams. The results obtained with the sensors are compared with each other 

concerning the geometrical and prediction accuracy of cracks, repeatability of the results, and 

economic aspects. The desired outcome for each sensor is to determine the smallest detectable 

crack with an absolute positioning accuracy at a centimeter-level. Their performance was tested 

in an arch-gravity dam in the Swiss Alps. The environment is challenging due to the sparse 

lighting conditions, the homogeneous texture of the wall, the narrow gallery of the long dam, 

and the absence of the global navigation satellite system (GNSS) signal.  

The data collection, the measurement environment, and the used instruments are presented in 

Chapter 2. Chapter 3 presents the methods used for extracting and locating the cracks from the 

collected data. In Chapter 4, the results of the different sensors are presented and compared 

with each other. Finally, the paper concludes with a summary of the main findings and an 

outlook in Chapter 5. 
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2 FIELDWORK AND PREPROCESSING 

2.1 Measurement Environment 

The measurement site was an arch-gravity dam in the 

Swiss Alps. The gallery of the dam was around 220 

m long and its diameter was about 1.80 m. Nine 

consoles installed in the gallery served as ground 

control points (GCPs) and are part of a permanently 

installed geodetic network to monitor the dam and 

build the dam coordinate system. The overall 

geometry of the network is not optimal for 

measurements since the shape of the tunnel is long 

and narrow, meaning the GCPs are almost on a line. 

The environment is challenging due to the sparse and 

non-homogeneous lighting condition, the variable 

humidity, and the homogeneous, repetitive pattern 

on the surface of the concrete (see Figure 1). 

 

2.2 Experimental Setup 

2.2.1 Sensors Used in the Assessment 

In the context of this paper, three sensors (see Figure 2) were selected based on their 

functionalities and were tested in terms of their suitability for detecting cracks, i.e. an all-in-

one solution, a sensor acquiring high resulted images, and an active sensor providing 3D point 

information.  

The Leica BLK2GO is used as the all-in-one solution, high-resolution images were acquired 

with the Lumix DMC-FZ2000, and the depth images were captured with the Lucid Helios Time 

of Flight 3D camera. We refer to the mentioned sensors in the following parts as BLK2GO, 

DSLM, and depth camera, respectively. To facilitate the comparison of the three sensors, 

selected specifications have been collected in Table 1. 

 

Figure 1: Conditions inside the gallery of the arch-

gravity dam 

Figure 2: Sensors to be tested (from left to right): Leica BLK2GO [8], Lumix DMC-FZ2000 [9], Lucid 

Helios Time of Flight 3D camera [10] 
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Table 1: Selected sensor specifications 

 BLK2GO DSLM Depth Camera 

Output 
Point cloud, images,  

Trajectory information 

RGB images or  

videos 

Depth and intensity 

images 

Sensors LiDAR, IMU, 4 Cameras  1-inch MOS 

0.5-inch Sony 

DepthSense IMX556 

CMOS 

Localization GrandSLAM n/a n/a 

Relevant Acquisition 

Frequency 
LiDAR: 420’000 pts/s 

Images: n/a 

Videos:  25 fps 
15 Hz 

Pixel Size at 1 m 

Distance 
Image: 1.6 mm 0.26 mm 1.7 mm 

Operation Range LiDAR: 0.5 – 25 m n/a 0.3 m – 6.0 m 

Image Resolution 4.8 MP 20.1 MP 0.3 MP 

Field of View 300° x 135° 
4° x 3° - 73° x 53° (focal 

length 8.8 – 176 mm) 
59⁰ x 45⁰ 

 

The Leica BLK2GO is a handheld imaging laser scanner. This mapping solution is based on the 

GrandSLAM technology which makes use of an IMU, visual and light detection and ranging 

(LiDAR) simultaneous localization and mapping (SLAM) and is used for the positioning of the 

BLK2GO. Besides a point cloud and a trajectory, the system also provides for each image a 

timestamp, position, and orientation with respect to the mapping frame. Since it is a one-button 

solution, it is not possible to change any acquisition settings of the cameras or the LiDAR. The 

digital single-lens mirrorless (DSLM) camera DMC-FZ2000 from Lumix is a system camera 

that can acquire images and videos. The latter can then be used to extract the individual image 

frames. The depth camera Helios Time-of-Flight by Lucid Vision Labs is an active sensor that 

provides depth and intensity images. The depth camera is controlled by a Python script on an 

external computer, where the recorded data is stored. An external power source is also required 

for the operation. The most important parameters adjusted in our case were exposure time, 

operating distance, averaging over frames, and gain. 

2.2.2 Mobile Platform 

A four-wheeled robot, the Super Mega Bot from 

Inspectorbots and customized by the RobotX 

Center for Robotics, was used to carry the 

sensor. The robot was used to assess the 

applicability of such a vehicle in the dam 

environment. The sensors mentioned in Chapter 

2.2.1 were mounted on the platform, as shown 

in Figure 3. Thus, their relative positions with 

respect to each other stayed the same during the 

experiments.  
Figure 3: Sensors (1. DSLM, 2. depth camera, 3. BLK2GO) 

mounted on the Super Mega Bot 
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2.3 Calibration 

User-calibrations of the sensors were carried out before acquiring the data. For the BLK2GO, 

we followed the guided user-calibration as instructed by the manufacturer Leica Geosystems 

[11]. To correct for the lens distortions in the images acquired with the DSLM, we used a black 

and white chessboard. The acquisition of the board was done at different angles and distances 

and the images were used for the estimation of the radial distortion and intrinsic parameters of 

the camera using the Camera Calibrator app of the toolbox Image Processing and Computer 

Vision from MATLAB [12]. Using these parameters we undistorted the images in the following 

processing steps. The intensity images acquired with the depth camera are impacted by the 

scanning distance and the angle of incidence as a consequence of the measurement 

configuration, as well as the camera related inter-pixel variations. In order to remove these 

effects, the intensity images were used to estimate the corresponding reflectance images by 

applying a previously estimated calibration function. For the latter, an independent experiment 

was set up using a flat highly-diffuse white wall to acquire depth and intensity images following 

the procedure described in Frangez et al. [13]. 

 

2.4 Data Collection 

2.4.1 Off-Site Experiments 

Before carrying out the measurements on-site in the arch-gravity dam, we conducted 

experiments to determine the optimal acquisition settings for all the sensors used. We assessed 

the DSLM to determine whether videos or images are more suitable as capture mode. Our 

experiments showed that videos are less dependent on the speed of the robot since the number 

of frames extracted from the videos is flexible and can be selected by the operator, and thus in 

post-processing the desired overlap of the images can be chosen. The following on-site 

experiments were therefore executed in the video mode. 

To achieve optimal lighting of the images, the appropriate camera settings had to be determined 

experimentally. This means the optimal balance between the focal length, the exposure time, 

and the ISO value had to be determined. The darker the environment, the higher the exposure 

time or a higher ISO value should be set. If the exposure time is longer, the image gets blurrier 

due to movement and with a higher ISO value, the image exhibits higher noise. Finally, the 

focal length had to be set, affecting how much light passes through the lens. However, a short 

focal length lets more light pass through, which leads to a lower focal depth. Experimentally 

chosen parameters for our particular setup and environment were ISO 800, focal length 3.5 mm, 

and exposure time 1/60 s. 

A similar process of settings selection was chosen for the depth camera. However, since this is 

an active sensor, the acquisition is independent of the ambient lighting conditions. Due to the 

dynamic measurements, the averaging over the acquired frames was not used and the exposure 

time was set to the lowest one possible, i.e. 250 µs.   

Since no settings can be changed on the BLK2GO, the measurement conditions, i.e. the 

surrounding lighting had to be adjusted accordingly to obtain data of sufficient quality. We 

therefore carried out tests with different light conditions using various lighting setups. The 

results of our investigation indicated that bright and homogeneous light distribution within the 

field-of-view of the camera provides the optimal results. Obtaining images of sufficient quality 
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also has a direct impact on the trajectory estimation, since the visual SLAM directly relies on 

the images and the features that can be identified from the images. Furthermore, the bright and 

homogeneous lighting conditions also improve the quality of images captured by DSLM. 

Certain kind of AC lighting (i.e. fluorescent or incandescent light sources) can cause a pulsating 

effect within depth camera measurements, therefore we avoided using such light sources within 

this study. Finally, the optimal solution for all three sensors was using a construction site lamp 

(LED with 50 W power and 4000 lm). 

2.4.2 Reference Data 

To assess the data acquired in the arch-gravity dam with the three sensors, we used the Leica 

laser scanner RTC360 [14] and the total station Leica TS60 [15] to collect the reference data. 

Both datasets were expressed in the dam geodetic network by using the GCPs, which were 

either equipped with targets for scanning or prisms for tachymetry measurements. The RTC360 

was used to scan the entire gallery and the registration was done using black and white 

checkerboard targets distributed in the gallery with approximately 1 m spacing. The TS60 was 

used to measure reflectorless the locations of distinctive points along the cracks in a part of the 

dam. The positions of the cracks could be determined on a millimeter-level accuracy.  

2.4.3 On-Site Experiments 

So-called velocity, and repeatability tests as well as 360°-coverage acquisition of the predefined 

gallery sections were carried out on-site to determine the suitability of the three sensors for 

crack detection. The velocity test was conducted by acquiring the data with the mobile robot 

moving at velocities of approximately 0.25 m/s, 0.5 m/s, and 1 m/s. We found that higher-

quality images can be acquired by moving more slowly, i.e. approximately 0.25 m/s. Within 

the repeatability tests we aimed at finding whether the same crack can be detected within 

different measurement epochs.  

Since the sensors were fixed on the robot, their field of view direction was kept constant. To 

cover both sides of the gallery, the robot had to move back and forth along the gallery, switching 

the orientation at the end. If the coverage of the ceiling is desired, the sensors on the platform 

had to be re-oriented.  Therefore, to ease the acquisition we performed 360°-coverage 

acquisition of the gallery sections manually using the DSLM and depth cameras.  

 

3 METHODS AND PROCESSING 

3.1 Reference Data 

The registration and georeferencing of the scans acquired with the RTC360 were carried out in 

Leica Cyclone [16]. The registered point cloud with the achieved geometrical accuracy of 2 mm 

was considered sufficient as reference data for the application presented herein. The coordinates 

of the cracks measured with the total station TS60 were exported directly as georeferenced 

coordinates from the instrument and were used in the subsequent analysis. 

 

3.2 Crack Detection Algorithms 

Two different CNNs were used to extract cracks from the acquired datasets, namely for the 

intensity images we used a CNN model from Amberg Infra 7D [17], and for the RGB images 

we used a self-trained U-Net-based architecture. According to [17], the Amberg Infra 7D model 
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was trained with intensity images obtained by profile laser scanning data of tunnels. For the 

CNN model training we used a combination of images containing cracks acquired in different 

environments (i.e. provided by AXPO [18]) as well as images acquired on-site in the dam 

gallery. Combinations of the optimizers adam and stochastic gradient descent (SGD) [19], and 

the loss functions lovasz, focal, dice, and binary cross-entropy (BCE) [20] were used for the 

model training. The model with the adam optimizer and the focal loss function resulted in only 

few false-positive values but detected only wider cracks. The model with the adam optimizer 

and the BCE loss function had many false-positive values but also detected thin cracks. The 

model with the adam optimizer and the dice loss function was a compromise between the 

previous two models. To predict the cracks, a combination of these three best-performing 

models was used. The cracks were predicted with each model and the resulting binary images 

were overlaid and merged. The result was a grayscale image with four shades of gray used for 

the number of models that predicted a crack at a pixel-level (see Figure 4 left). This combined 

image represents the probability of the existence of a crack. For the final predicted crack image, 

a majority voting was performed. Less probable pixels, which are only predicted with one 

model are labeled as a crack when they belong to an area which already contains some pixels 

that are detected by two or more models. The resulting image (see Figure 4, right) reduced the 

number of false-positive detected cracks compared to the image predicted with only one model. 

 

3.3 Trajectory 

To georeference each detected crack, the image where the crack was identified needs to be 

georeferenced by knowing the camera extrinsic parameters. The latter is known if a trajectory 

of a sensor and subsequently of the robot is known. This is the case for the BLK2GO system. 

The images of the BLK2GO are in the mapping frame like the corresponding acquired point 

cloud. By knowing the transformation parameters of the point cloud, the trajectory, and the 

extrinsic parameters of the BLK2GO camera, the images were transformed in the dam 

coordinate system. 

Due to the challenging environment for the SLAM positioning system, the trajectory 

experienced a non-linear drift. To reduce the impact of the drift, the point cloud was cut into 15 

– 20 m sections. A separate rigid transformation was performed by computing the 

transformation between two targets within a particular BLK2GO point cloud section and their 

corresponding targets within the reference data of the RTC360 point cloud expressed in the dam 

Figure 4: Cumulative image of the three selected crack detection models (left) and the resulting image from the combination 

of the three models (right) 
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coordinate system. The 

transformation was then applied to 

the whole respective point cloud 

section. Due to the 

underdetermination of the 

transformation, the roll along the 

axis between two targets is not well 

constrained. The roll is however 

expected to be small because of the 

internal IMU.  

Figure 5 and Equations 1 and 2 show 

how the transformation between the 

BLK2GO and the dam coordinate 

system was done. First, the BLK2GO 

coordinate system was translated and rotated 

into the first target point so that the x-axis 

pointed in the direction of the second point. 

After scaling in the x-direction to reduce the 

drift, the rotation and translation into the 

dam coordinate system were performed.  

In the next step, we estimate the trajectory of 

the DSLM and the depth camera based on 

the known constant offset between the 

sensors and BLK2GO. For simplicity, the 

following is shown only for the DSLM, 

however it can be also applied to the depth 

camera setup. In order to calculate the offset 

between the DSLM and the BLK2GO, an 

image of the same scene was acquired from 

each sensor, with the robot being stationary. 

These images were referenced with the use 

of the RTC360 point cloud. Distinctive points were manually measured in the images and the 

point cloud. Out of these corresponding points, the extrinsic camera parameters were calculated 

with the direct linear transformation (DLT) [21]. Figure 6 gives an overview of all coordinate 

systems and their known transformations. 

Figure 6: Different coordinate systems and their known 

transformation matrices used in the data 

Figure 5: Transformation between BLK2GO and dam coordinate system 

𝑅𝐷𝑎𝑚
𝐵𝐿𝐾 = 𝑅𝑧(𝜑) ∙  𝑅𝑥(𝑧𝑥) ∙ 𝑆𝑥 ∙ 𝑅𝑥(𝑧𝑎) ∙ 𝑅𝑧(𝛼)   (1) 

𝑡𝐷𝑎𝑚
𝐵𝐿𝐾 = 𝑅𝐷𝑎𝑚

𝐵𝐿𝐾 ∙ 𝑡𝑡
𝐵𝐿𝐾 + 𝑡𝐷𝑎𝑚

𝑡   

 

where: 

(2) 

𝑡𝑡
𝐵𝐿𝐾 = −𝐴, 𝑡𝐷𝑎𝑚

𝑡 = 𝑋,   𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 
𝑌𝑦−𝑋𝑦

𝑌𝑥−𝑋𝑥
 ,   𝑧𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 

𝑌𝑧−𝑋𝑧

‖𝑋−𝑌‖
 ,   𝑠 =

‖𝑋−𝑌‖

‖𝐴−𝐵‖
,    

 

𝑧𝑎 = 𝑟𝑐𝑡𝑎𝑛 
𝐵𝑧−𝐴𝑧

‖𝐴−𝐵‖
 , 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 

𝐵𝑦−𝐴𝑦

𝐵𝑥−𝐴𝑥
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The transformations from both sensor systems to the RTC360 coordinate system 𝑇𝑅𝑇𝐶
𝐷𝑆𝐿𝑀,

𝑇𝑅𝑇𝐶
𝐵𝐿𝐾𝐶𝑎𝑚 are known through the DLT. The transformation 𝑇𝐵𝐿𝐾𝐿𝑖𝑑𝑎𝑟

𝐵𝐿𝐾𝐶𝑎𝑚  from the BLK2GO camera 

to the BLK2GO trajectory is given from the calibration of the instrument. 𝑇𝐷𝑎𝑚
𝐵𝐿𝐾𝐿𝑖𝑑𝑎𝑟(𝑡), which 

describes the transformation from the BLK2GO trajectory coordinate system to the dam 

coordinate system, was given by georeferencing the trajectory for each timestamp. Finally, 

Equation 3 shows the entire transformation from the DSLM coordinate system to the dam 

coordinate system. 

𝑇𝐷𝑎𝑚
𝐷𝑆𝐿𝑀 = 𝑇𝐷𝑎𝑚

𝐵𝐿𝐾𝐿𝑖𝑑𝑎𝑟(𝑡) ∙ 𝑇𝐵𝐿𝐾𝐿𝑖𝑑𝑎𝑟
𝐵𝐿𝐾𝐶𝑎𝑚 ∙ (𝑇𝑅𝑇𝐶

𝐵𝐿𝐾𝐶𝑎𝑚)−1 ∙ 𝑇𝑅𝑇𝐶
𝐷𝑆𝐿𝑀                        (3) 

To find the corresponding BLK2GO trajectory point for a DSLM image, time synchronization 

between the sensors is required. For this purpose, the experimentally determined beginning of 

the movement was determined from the different sensor images and the time offsets were 

calculated.  

 

3.4 Georeferencing Cracks with Trajectory 

With the trajectory and the georeferenced point cloud we were able to estimate the 3D 

coordinates for each pixel of an image containing the detected cracks. From the intrinsic 

parameters of the camera and the known orientation, the vector between the camera center and 

the pixel detected as crack could be calculated which is the line of sight (LOS). With a nearest 

neighbor search perpendicular to the LOS approximate 3D coordinates for the pixel detected as 

a crack could be determined at the centimeter-level. To reduce computation time only the border 

pixels of the crack were used to calculate the 3D coordinates. 

 

3.5 Georeferencing Cracks Using a Photogrammetric Model 

Another approach to georeference the images is using a photogrammetric model was explored 

as well. The image overlap of about 80% was large enough to estimate a photogrammetric 

model using Agisoft Metashape [22]. The model was georeferenced by choosing at least three 

georeferenced points in the images. It was possible to export the camera positions and 

orientations to perform the crack detection (see Chapter 3.3) and the crack projection onto a 

point cloud (see Chapter 3.4).  

 

3.6 Segmentation 

In order to know which projected pixels belong to which crack, the 3D coordinates were 

clustered with DBSCAN [23]. The parameters were defined experimentally, i.e. the radius was 

set to 0.05 m, and 5 points were required to be within the search radius. To assign pixel regions 

that correspond to the same crack acquired in different epochs we calculated several parameters 

to allow for correct crack matching. For this particular task we had chosen a bounding box 

oriented according to the axes of the dam coordinate system, its diagonal and center point, as 

well as the number of points in order to describe the crack as unique.  

 

4 Results and Discussion 

4.1 Crack Detection 

We were able to successfully detect cracks in the images of all sensors (see Table 3 and Figure 

9). Figure 7 shows the number and width of detected cracks for each sensor type. In the DSLM  
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images, 97 % of the cracks wider than 1 mm could be detected by the self-trained CNN. Most 

of the cracks wider than 2 mm were detected in the BLK2GO images. To avoid running out of 

memory, we tiled the images, i.e. we cut the images used in the prediction step into tiles of size 

896 x 896 pixels (see Table 2 and Figure 8). The disadvantage of this tilling is that cracks are 

more interrupted, wide cracks are not always detected, and the number of false-positive values 

is higher. In the generated orthophotos from the photogrammetric model, cracks are detected 

but not to their full extent.  

Table 2 shows the percentage (%) of the crack lengths that were detected within the detection 

algorithm. Besides from the percentage values, very important indicators for the performance 

of the CNN are the numbers of false-negative predictions (− −) and false-positive predictions 

(− +). The false-negative predictions should be avoided, and false-positive predictions should 

be minimized, meaning, it is better to detect a crack 

that is not actually a crack, rather than not detecting 

a crack at all. Comparing the cracks detected using 

the orthophoto with respect to the other two DSLM 

results (i.e. using subsampled and tiled datasets), 

the percentage of detected cracks is lower. 

Additionally, the false-negative values are lower by 

10%. For the intensity images acquired with the 

depth camera, the crack detection algorithm was 

able to predict cracks that are wider than 6 mm, 

however about 60% of the crack was not detected 

(see Figure 9). 

Figure 8: Number of detected 

cracks (in one image per 

section per run) of both 

sensors compared with the 

number of reference cracks in 

dependency of their widths 

Table 2: Comparison between a subsampled image, tiled 

image without subsampling, and an orthophoto of the 

DSLM sensor with detected 

Figure 7: Result of the crack detection algorithm (red: crack) 

with a subsampled image (left) and with a tiled image (right) 

Figure 9: Cracks on the intensity image of the depth 

camera (green: correct detected, blue: false-negative 

values, red: false-positive values) 

 Section 1 
 % − − − + 

DSLM subsampled 80 4 13 

DSLM tiled 72 4 133 

DSLM orthophoto 69 3 95 

 

Automated Inspection within Galleries of Large Dams (11349)

Helena Laasch, Nathalie Ryter, Isabelle Steffen, Alexander Reske, Ephraim Friedli and Valens Frangez (Switzerland)

FIG Congress 2022

Volunteering for the future - Geospatial excellence for a better living

Warsaw, Poland, 11–15 September 2022



 

To use the proposed method for crack detection, repeatability of the crack prediction must be 

ensured. This part of the analysis was performed using three measurement epochs (runs) 

acquired in three different parts of the gallery (see Chapter 2.4.3). Ideally, the detected cracks 

should have the same size and form in all runs used in the analysis. The evaluation results based 

on a single image are shown in Table 3. The higher the value and more similar the values are 

between the epochs per section, the higher the repeatability. The datasets acquired with the 

BLK2GO have more false-negative values than the DSLM, and the percentage of the detected 

crack lengths is higher using the DSLM. This can be traced back to the images of lower-

resolution of the BLK2GO, as well as the sensor settings which are not adjustable to be able to 

acquire images with higher quality. Generally, there is higher agreement between epochs 

acquired with the DSLM than those acquired with the BLK2GO.  

 

 

 

4.2 Accuracy of the Geometry 

The accuracy of the trajectory and the point cloud directly influence the accuracy of the 3D 

coordinates of detected cracks. As described in Chapter 3.3, the BLK2GO trajectory indicates a 

large drift due to the challenging gallery shape, i.e. elongated tunnel. The impact of the drift on 

the point cloud estimation is shown in comparison to the RTC360 point cloud (see Figure 10).  

The two point clouds were aligned based on the calculation of the transformation between the 

GPCs in the RTC360 dataset and the BLK2GO dataset (see Chapter 3.3).  

The impact of the drift of the trajectory onto the 

detected cracks is shown in Figure 11. The 

figure shows extracted cracks of nine 

consecutive DSLM images, which appear 

shifted with respect to each other, on a level of 

a few centimeters. Furthermore, the distances 

between the georeferenced BLK2GO targets 

and the targets of the RTC360 point are shown 

in Table 4. The deviations increase from the 

 Section 1 Section 2 Section 3 

 DSLM BLK2GO DSLM BLK2GO DSLM BLK2GO 

Run % − − − + % − − − + % − − − + % − − − + % − − − + % − − − + 

1 80 4 13 37 8 32 90 1 17 54 6 26 66 3 20 80 6 26 

2 79 4 23 31 8 25 91 2 18 47 6 28 75 3 19 74 6 25 

3 86 5 12 39 8 32 81 3 6 58 6 21 77 2 11 58 5 15 

Table 3: Detected crack lengths (%), false-negative predictions (− −), and false-positive predictions (− +) for one image in each 

section and run 

 

Figure 10: Indication of a 

drift of the BLK2GO point 

cloud compared to the 

RTC360 point cloud, which 

served as ground truth (top 

view) 

Figure 11: Projected cracks from nine consecutive images 

(Δt=0.4 s) 
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start of the gallery, i.e. part used for alignment, 

to the end, where they reach several centimeters. 

To avoid influences of our special setup on the 

trajectory, the BLK2GO was carried by hand in 

run four. The deviations of run four are in a 

similar range as the others which leads to the 

assumption that the setup has no impact on the 

quality of the trajectory.  The cloud-to-cloud 

(C2C) distances between the RTC360 and 

BLK2GO point clouds are also shown in Table 

4. The C2C differences are smaller since the 

profile of the gallery does not change much. As 

the drift is along the axis of the gallery, not the 

whole impact of the drift on the point cloud can be shown with the C2C distances.  

In the case where the georeferencing is done with a photogrammetric model (see Figure 12) the 

accuracy of the cloud-to-mesh (C2M) distance is higher with a mean of 2.8 cm and a standard 

deviation of 2.4 cm, as compared to the C2C distance of the BLK2GO point cloud (see Table 

4). The achieved accuracy is in the centimeter range, therefore it is considered sufficiently good 

for this application. One of the disadvantages of using the photogrammetric model is that the 

computation takes much more time than using the trajectory. Also, if the BLK2GO point cloud 

is partitioned into smaller sections, which are then individually transformed, the drift of the 

trajectory could be significantly reduced.  

 

5 CONCLUSION 

We carried out a suitability investigation of three sensors, namely Leica mapping system 

BLK2GO, the Lumix digital single-lens mirrorless (DSLM) camera DMC-FZ2000, and the time-

of-flight depth camera Helios Lucid, for the task of autonomous inspection of cracks in dam 

galleries. The data was collected in an arch-gravity dam in the Swiss Alps. The crack extraction 

from the acquired data was done based on convolutional neural networks (CNN). A summary 

of the advantages and disadvantages of each sensor for crack detection application is outlined 

in Table 5. 

Table 4: Mean (μ) and standard deviation (σ) of the target distance and cloud-to-cloud (C2C) distance between RTC360 and 

BLK2GO point cloud (all values in [cm])  

 Section 1 Section 2 Section 3 

 
Target 

distance 
C2C 

Target 

distance 
C2C 

Target 

distance 
C2C 

Run 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

1 3.2 2.0 0.7 0.7 27.2 8.4 0.9 2.8 23.0 13.6 1.8 5.7 

2 4.0 2.0 0.6 0.8 17.2 9.0 1.6 2.8 36.8 26.5 2.3 6.1 

3 9.5 7.5 0.8 0.8 34.7 13.5 1.5 3.9 31.1 13.1 1.5 5.3 

4 3.4 1.9 2.4 5.3 58.2 19.9 4.2 5.5 21.6 11.8 2.3 2.1 

 

Figure 12: C2M comparison between photogrammetric 

model and RTC360 point 
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Overall, the crack extraction results obtained with the DSLM camera are the most satisfactory, 

given suitable ambient conditions, i.e. sufficient and homogeneous lighting. If DSLM is used 

as a standalone solution, computation of a photogrammetric model needs to be carried out for 

localization, which can be computationally intensive. However, if data processing, as well as 

crack extraction, can be done in post-processing and not in real-time, this disadvantage becomes 

irrelevant. We showed that the geometry of the photogrammetric model is accurate on a 

centimeter-level, which is considered enough for the application presented herein and the 

orthophoto derived therefrom yields promising results concerning the number of false-negative 

cracks. For the given measurement environment and the selected processing steps, 

the BLK2GO data cannot be considered suitable due to being prone to drifts as a consequence 

of the homogeneous elongated geometry of the dam. Also, the depth camera performance was 

not satisfactory, since the amount of successfully extracted cracks from the intensity images 

was the lowest compared to the other two sensors. The limited performance using intensity 

images was likely related to their relatively low resolution.  

To further improve the optimal solution using the DSLM camera, future work should focus on 

improving the CNN-based crack detection algorithms, which should ideally be trained with 

more images containing cracks of various shapes and sizes. Also, to increase the versatility, 

images acquired in various lighting conditions and surface types (e.g. wet or dry concrete 

surfaces, which are visually different) should be included. This might as well improve the 

repeatability of the crack extraction, which would increase the reliability of the automatic 

inspection. Furthermore, practical aspects of choosing a more suitable platform, e.g. a drone, 

for data acquisition should be considered to improve the flexibility (i.e. to ensure adjustable 

field-of-view of the sensor to achieve full coverage of the gallery walls) and to ensure a constant 

distance to the gallery wall. The selected suitable platform should be equipped with a sufficient 

lighting source to ensure homogeneous light coverage on the wall.  

 
Table 5: Summary of the advantages and the disadvantages of the evaluated sensors 

 BLK2GO DSLM Depth Camera 

Pros 

- cracks larger than 2 mm 

can be detected  

- images, trajectory 

information, point cloud in 

one measurement 

- images aligned with the 

point cloud  

- not post-processing 

intensive 

- cracks larger than 1 mm 

can be detected 

- low number of false-

negative cracks  

- low-cost sensor 

 

- cracks larger than 6 mm* 

can be detected 

- active sensor, i.e. no 

additional lighting needed 

- low-cost sensor 

 

 

* not evaluated with smaller 

cracks 

Cons 

- passive sensor, i.e. needs 

additional lighting 

- large drift of trajectory  

- which varies throughout the 

point cloud  

- high number of false-

negative cracks  

- no acquisition setting 

adjustment possible 

- photogrammetric model or 

trajectory with point cloud 

needed for the crack 

localization  

- passive sensor, i.e. needs 

additional lighting 

- localization is 

computationally expensive  

- photogrammetric model or 

trajectory with point cloud 

needed for the crack 

localization  

- external battery and storage  

- needed 

- localization is 

computational expensive 
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