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SUMMARY 

Traditionally, most navigation systems rely on GNSS/inertial navigation system (INS) 

integrated navigation systems, in which the INS can provide reliable positioning during short 

GNSS outages. However, for prolonged GNSS signal outages, the performance of the system 

will be solely dependent on the INS solution, which can lead to a significant drift over time. 

Consequently, integrating complementary onboard sensors is crucial. This study proposes a 

robust, loosely-coupled (LC) integration between the INS and LiDAR simultaneous mapping 

and localization (SLAM) using an extended Kalman filter (EKF). The integrated navigation 

system is tested on the raw KITTI dataset using both residential and highway datasets, which 

mimics various outdoor driving environments during a complete absence of GNSS signal. It is 

shown that the proposed IMU/LiDAR SLAM integrated system outperforms the sole use of 

the INS. The integrated system positioning results yielded an average reduction of the root-

mean-square error in the east, north, and up directions of 94%, 67%, and 27%, respectively. 
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1 INTRODUCTION 

There exist several challenges in the field of vehicular navigation research and development, 

of which providing accurate, robust positioning is a major one. That is, vehicular positioning 

demands navigation systems that provide an accurate position for all driving environments and 

weather conditions. In addition, the navigation system must achieve redundancy, such that 

should one sensor fail to operate, the system will still be functional. As a result, the use of a 

single sensor may not produce a robust navigation solution, even if such sensor provides 

accurate positioning. This emphasizes the need for multi-sensor integration to result in robust, 

accurate positioning (de Ponte Müller, 2017, Martínez-Díaz and Soriguera, 2018).  

GNSS/INS integrated navigation systems are commonly adopted due to the complementary 

characteristics of GNSS and INS. Typically, the observations of the GNSS and INS are fused 

using a Kalman filter (Shin, 2005). That is, the INS provides the position of the vehicle through 

mechanization while receiving updates from the GNSS at a slower frequency to minimize the 

mechanization drift. The integration relies on the ability of the INS to provide the position of 

the vehicle at a high frequency. As a result, for closed-error scheme integration, the INS can 

provide reliable positioning while experiencing short GNSS signal outages. However, if the 

GNSS outage occurs for a prolonged amount of time, the system will rely on the performance 

of the INS, which is prone to a significant drift, especially when a low-cost micro-electro-

mechanical system (MEMS) IMU is used (Abd Rabbou and El-Rabbany, 2015, Elmezayen and 

El-Rabbany, 2021, Elmezayen and El-Rabbany, 2020, Gao et al., 2021, Wang et al., 2018).  

In order to improve the aforementioned performance of navigation systems, additional onboard 

sensors that can be used for navigation are required, which allows the system to sustain 

prolonged GNSS outages. LiDAR sensors are widely used for localization through 

simultaneous mapping and localization (SLAM) techniques. The basic idea of SLAM 

algorithms is to use a sensor to construct a map of the surrounding environment, while 

simultaneously keeping track of the location of the sensor.  

Many studies proposed the integration of GNSS, INS, and LiDAR SLAM. In (Chang et al., 

2019), an integration scheme was proposed, which integrates GNSS/INS with LiDAR SLAM 

based on graph optimization. In that study, the GNSS/INS results were matched with the 

relative pose of a 3D probability map. The system was tested during a one-minute outage of 

the GNSS signal. The RMS of the position in the east and north was reduced by roughly 80% 

compared to the GNSS/INS navigation solution.  

In this paper, a loosely-coupled (LC) integration between GNSS/INS and LiDAR SLAM using 

an EKF is proposed. The proposed navigation system is tested in different driving 

environments (urban and rural) and scenarios (high and low driving speeds). In addition, the 

system provides reliable position and attitude information during GNSS signal outages. 
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2 SYSTEM ARCHITECTURE AND MATHEMATICAL MODELS 

2.1  Full IMU Mechanization 

The IMU observations are measured with respect to the body frame (b-frame), whose axes are 

defined as follows: the Y-axis is the forward direction, the X-axis is the transverse direction, 

and the Z-axis is the up direction. In addition, the IMU measurements are referenced to the 

navigation frame. Given the raw measurements of the accelerometer and gyroscopes of the 

IMU in the mechanization, the outputs are position (latitude, longitude, and altitude), velocity 

(east, north, and up directions), and attitude (roll, pitch, and yaw angles) (Noureldin et al., 

2013). 

2.2  LiDAR SLAM 

The SLAM algorithm used in this study is the Kitware SLAM (KITWARE, 2020), which is 

based on the LOAM algorithm (Zhang and Singh, 2014). The LOAM algorithm is composed 

of three main stages, namely point cloud registration, LiDAR odometry, and LiDAR mapping. 

While Kitware SLAM uses the base architecture of LOAM, there exist some improvements. 

Firstly, running time is reduced due to the use of C++ libraries and tools designed for better 

computational performance. In addition, the algorithm is independent form robot operating 

system (ROS) and does not rely on hard-coded parameters. It can also run in Windows and 

Linux operating systems using LidarView software. Furthermore, it is more generalized such 

that it runs on several LiDAR sensors, including the Velodyne. Finally, the algorithm can 

process point clouds from multiple LiDAR sensors.  

2.3 IMU/LiDAR Integration 

In this paper, a LC integration between the GNSS, IMU, and LiDAR is adopted using an EKF, 

which results in an integrated navigation solution, as shown in Figure (1).  

 

Figure (1): A block diagram for the GNSS/LiDAR/IMU LC integration 
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Raw IMU measurements of accelerations and angular rotations are used as input to a full IMU 

mechanization, which outputs position, velocity, and attitude of the navigation system. 

Meanwhile, the LiDAR point clouds are fed into the Kitware SLAM algorithm, which yields 

the position and attitude of the vehicle. These are used as the measurement update to the IMU 

mechanization output during the update stage of the EKF, which yields an integrated navigation 

solution. Subsequently, the updated errors are fed back into the IMU mechanization, which 

forms a closed-loop error scheme. 

3 DATA SOURCE AND CASE STUDIES 

The raw KITTI dataset is used in this study (Geiger et al., 2013). Two datasets of the raw KITTI 

dataset were used. The first one is a 2-minute-segment drive from the raw, residential KITTI 

datasets, 2011_09_30_drive_0018_sync, which features urban environments with dense 

features and slow driving speed. The second dataset is a 90-second-segment drive from the 

raw, road KITTI dataset, drive, 2011_10_03_drive_0042_sync, representing highway 

environments with sparse features and fast driving speed. These datasets formulate two case 

studies of GNSS signal outages for urban and rural environments. 

For both case studies, the data experiences the same processing procedures. Firstly, the raw 

data of the IMU are fed as inputs into the full IMU mechanization. The stream of point clouds 

collected by the LiDAR sensor is processed using the KITWARE SLAM algorithm. Finally, 

the mechanization results and the LiDAR update are integrated using the EKF, which yields 

the integrated navigation solution. 

4 ANALYSIS AND RESULTS 

4.1 First Case Study—The Residential Dataset 

The first case study represents a full GNSS signal outage along the whole trajectory of the 

vehicle. This is a 120-second outage, which processes all LiDAR frames of the residential 

dataset. Figure (2) illustrates the position errors in the ENU local frame. The first one uses the 

full IMU mechanization only without any update from the LiDAR SLAM. The second 

navigation solution is obtained through the LIDAR SLAM only. Finally, the third navigation 

solution is the integrated one resulting from the EKF. Similarly, Table (1) presents the position 

and attitude error statistics for the same three cases. 
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Figure (2): Residential dataset - complete GNSS signal outage: position errors (ENU) 

 

 

 

Table (1): Residential dataset – complete GNNS outage: position error statistics (m) 

 IMU  LiDAR  IMU/LiDAR 

 Mean RMSE Max  Mean RMSE Max  Mean RMSE Max 

East 185.158 260.963 639.347  4.372 5.145 8.774  4.372 5.145 8.774 

North 163.453 233.536 576.133  -2.212 2.572 4.625  -2.212 2.572 4.625 

Horizontal 86.195 116.458 277.192  -3.426 4.456 8.528  -3.426 4.456 8.528 

Up 5.949 7.236 13.127  2.836 3.155 6.100  2.813 3.207 6.357 
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It is noticeable from Figure (2) the large drift of the IMU mechanization over time, which 

indicates that it cannot be a sole, reliable sensor for navigation. However, the EKF integrated 

navigation solution exhibits significantly less error in comparison with the mechanization 

solution. The EKF converges to the measurement update, and thereby, the position solution is 

closer to the LiDAR SLAM solution.  

The trajectories for the complete outage of the residential dataset are presented in Figure (3), 

where the mechanization, LiDAR SLAM, and EKF trajectories are compared to the ground 

truth.  

 

Figure (3): Residential dataset – complete GNNS signal outage: comparison of trajectories 

4.2 Second Case Study—The Highway Dataset 

The second case study utilizes the highway dataset, which features high driving speed and 

sparse-feature environments. Figure (4) represents the position, while Tables (2) quantify these 

errors numerically. Similar to the previous case study, the EKF converges to the position 

provided by the LiDAR SLAM navigation solution for the east and north directions. However, 

it converges the INS estimation for the up direction.  

An Integrated IMU/LiDAR Navigation System For GNSS-Denied Environments (11431)

Nader Abdelaziz and Ahmed El-Rabbany (Canada)

FIG Congress 2022

Volunteering for the future - Geospatial excellence for a better living

Warsaw, Poland, 11–15 September 2022



 

Figure (4): Highway dataset - complete GNSS signal outage: position errors (ENU) 

 

Table (2): Highway dataset – complete GNNS outage: position error statistics (m) 

 IMU  LiDAR  IMU/LiDAR 

 Mean RMSE Max  Mean RMSE Max  Mean RMSE Max 

East -73.02 111.17 284.67  5.90 12.09 31.68  5.87 12.08 31.62 

North 25.81 32.29 50.88  -20.14 23.75 33.55  -20.15 23.76 33.52 

Horizontal 79.98 115.76 288.56  22.45 26.65 43.80  22.45 26.66 43.78 

Up 13.82 17.55 34.59  91.67 126.11 277.13  13.70 17.36 33.98 
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The trajectories for the complete outage scenario of the highway dataset are compared to the 

ground truth in Figure (5) 

 

 

Figure (5): Highway dataset – complete GNNS signal outage: comparison of trajectories 

 

5 CONCLUSIONS 

In this paper, a loosely-coupled GNSS/INS/LiDAR SLAM integrated navigation system was 

proposed using an EKF. The dataset considered in this study is the raw KITI dataset, of which 

residential and highway drives were adopted. Two case studies were presented using residential 

and highway datasets. For each case, a full GNSS signal outage was simulated along with the 

full trajectory of the vehicle. The integrated navigation system yielded a navigation solution 

that outperformed the INS counterpart in both case studies, which is numerically quantified by 

an average reduction of the RMSE of 94%, 67%, and 27%, in the east, north, and up directions, 

respectively, for both cases studies combined.  
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