

# Re-establishment of the PNG94 geodetic datum and vertical reference system in the Papua New Guinea oilfields

# after the Mw 7.5 earthquake on 26th February 2018

**Richard Stanaway** 

School of Civil and Environmental Engineering

University of New South Wales

















## 2018 Highlands PNG earthquake sequence



Context of the 2018 PNG Highland Earthquake Sequence (USGS, Gilles Brocard, 2018)





## Extensive landslides and damage to infrastructure























Sponsors: 2

leica

Geosystems



# Initial INSAR Analysis – JAXA – ALOS2





## Evolution of the Australian plate boundary



 ← Millions of Years b.p.

← "paleo" ITRF/WGS84

From Hall, R. 2002. Journal of Asian Earth Sciences, 20 (4), 353-434.





## Papuan Fold and Thrust Belt – SRTM topography







## Geomorphology – Hindenburg Wall











## PNG Oilfields – Geodetic Network



than 30 mm horizontal and 50 mm in height using GNSS





# Site motion – measured by static GPS



feica

Geosystems

Sponsors: 2

Geosystems



## PNG Tectonic model from GNSS site velocities



Geosystems



#### Site motion in stable Australian Plate frame





## PFTB site motion in stable Australian Plate frame







## March-June 2018 –

## Post-earthquake geodetic surveys

#### Re-establish geodetic control

- Quantify deformation of geodetic network
- Pipeline integrity monitoring and strain estimation
- Ground truthing for Lidar
- Ground Control Points (GCP) for Drone surveys
- Develop deformation model for coordinate and elevation conversions (coseismic displacement model)





#### Post-earthquake surveys









Computation of earthquake deformation using GPS

- Reprocess GPS data archive in ITRF2014 using AusPOS
- Estimate ITRF2014 time series for each 1<sup>st</sup> order station
- Estimate coseismic offset at each 1<sup>st</sup> order station
- Reprocess pre-earthquake surveys using ITRF2014 at epoch of survey
- Reprocess post-earthquake surveys also using ITRF2014
- Estimate deformation by differencing of solutions
- Some postseismic afterslip included in displacement estimation
- Apply correction to existing PNG94 coordinates and elevations





#### Some assumptions made using campaign GNSS data







# **GNSS** derived displacements

























#### Displacements – Pillar 11 Hides - North







Additional work – currently in progress

- Infilling GNSS static observations
- Adjustment of epicentral locations
- Integration with InSAR analysis
- Develop coseismic/postseismic displacement grids
- Monitor postseismic deformation







#### Tenk yu tru -Thank you!

