

Preliminary Study on 3D Reference Frames for the Russian Federation

Leonid Lipatnikov, Ph.D.

Siberian State University of Geosystems and Technology

Content

- Overview of 3D reference frames in Russia
- Criteria of the perfect terrestrial reference frame
- Possible developments
- Suggestions for practical implementation

Geodetic Infrastructure in Russia

Structure of the State Geodetic Network

2D and 3D Reference Frames. Ground Infrastructure

Reference frame: ITRF (different versions), SC-42, SC-95, local/regional datum

3D Reference Frames: PZ-90.11, GSC-2011

- ✓ First introduced on Jan 28, 2012 (Gov. Decree N 1463)
- ✓ Centimeter-level agreement with ITRF2008
 - ✓ PZ-90.11 at epoch 2010.0
 - ✓ GSC-2011 at epoch 2011.0
- ✓ GSC-2011
 - \checkmark surveying and mapping
- ✓ PZ-90.11
 - ✓ Space activities
 - ✓ Navigation
 - ✓ Geodetic works for military purposes

GSC-2011

- Implemented and maintained by the Federal Service of Registration, Cadaster, and Cartography-Rosreestr
- ✓ Centimeter-level agreement with ITRF2008 at epoch 2011.0
- ✓ NUVEL-1A tectonic plate motion model was used in adjustment
- ✓ Expected to replace legacy SC-42, SC-95 by 2021
- ✓ During the transition period is typically applied as static one for the reference epoch 2011.0.
- Guidelines on accounting for displacements and deformations are under development.

PZ-90.11

- ✓ Native reference frame for GLONASS ephemerides
- Implemented and maintained by the Russian Space Agency and Ministry of Defense
- ✓ Replaced previous version PZ-90.02 on 31st December 2013
- ✓ Practically accessible only via precise GLONASS ephemerides using Precise Point Positioning (PPP) provided by <u>SVOEVI</u>
- ✓ Described in:

System of geodetic parameters "PARAMETRY ZEMLI 1990" (PZ-90.11) Reference Document. Moscow,2014 <u>http://eng.mil.ru/files/PZ-90.11_final-v8.pdf</u>

✓ Kinematic reference frame

Transformation Parameters

$\left(X\right)$	1	$+\omega_z$	$-\omega_{y}$	(X)		(ΔX)
Y = (1+m)	$-\omega_{7}$	1	$+\omega_{v}$	Y	+	ΔY
$\left(Z \right)_{2}$	$\left(+\omega_{y}^{2}\right)$	$-\omega_{_X}$	1	(Z)	1	$\left(\Delta Z\right)$

#	From system 1	To system 2	ΔX , m	ΔY , m	ΔZ , m	$\omega_X, 10^{-3}$ "	$\omega_Y, 10^{-3}$ "	ωz, 10 ⁻³ "	$m, 10^{-6}$	Epoch e
1	SK-42	PZ-90	+25	-141	-80	0	-350	-660	0	_
			± 2	± 2	± 3	± 100	±100	± 100	±0.250	
2	SK-95	PZ-90	+25.90	-130.94	-81.76	0	0	0	0	_
3	PZ-90	PZ-90.02	-1.07	-0.03	+0.02	0	0	-130	-0.220	2002.0
			±0.1	±0.1	± 0.1			±10	± 0.020	
1	4 WGS 84	4 PZ-90.02	+0.36	-0.08	-0.18	0	0	0	0	2002.0
4	(G1150)		±0.1	± 0.1	± 0.1				0 200	2002.0
5	DZ 00 02	D7 00 11	-0.373	+0.186	+0.202	-2.30	+3.54	-4.21	-0.008	2010.0
5	FZ-90.02	2 FZ-90.11	+0.027	± 0.056	<u>+0.033</u>	+2.11	<u>+0.87</u>	+0.82	+0.004	2010.0
6	GSK-2011	PZ-90.11	0.000	+0.014	-0.008	-0.562	-0.019	+0.053	-0.0006	0110
			± 0.008	± 0.018	± 0.011	± 0.698	±0.259	±0.227	± 0.0010	2011.0
7	DZ 00 11	ITDE2008	-0.003	-0.001	0.000	+0.019	-0.042	+0.002	-0.000	0100
/	FZ-90.11	TTKF2008	±0.002	±0.002	±0.002	±0.072	±0.073	± 0.090	± 0.0003	2010.0

http://eng.mil.ru/files/PZ-90.11_final-v8.pdf

CORS Stations

>1600 stations

Population Density

Perfect Reference Frame: Accuracy, Stability, and Convenience

- High accuracy over long term Deformations are accounted to avoid accumulation of distortions.
- Coordinates of ground-fixed points are constant Locally immovable objects can be described in constant coordinates.
- True coordinate geometry without transformation Calculated distances, angles correspond to measured values accurately.

Ease of transformation

The models and procedures are standard, widely supported. It is better if they are simple and can be applied in the field without special software

Ease of introduction into practice

Minimum changes of existing practices.

Current Reference Frames

Tectonic Plates

Plate Boundaries: P. Bird, "An updated digital model of plate boundaries An updated digital model of plate boundaries", *Geochemistry Geophysics Geosystems*, vol. 4, no. 3, 2003. doi:10.1029/2001GC000252

Data from:

Kondorskaya N.V., Shebalin N.V. (eds.) New catalog of strong earthquakes in the USSR from ancient times through 1977. World Data Center A for Solid Earth Geophysics, Report SE-31, NOAA, Boulder, Colorado, USA, 1982, 608 p <u>http://www.wdcb.ru/sep/seismology/cat_strong_USSR.ru.html</u>

General Solution

Regions	"RIGID"	"NONRIGID"
Number	59	26

Classification of Regions

Regions	"RIGID"	"NONRIGID"
Number	59	26
% of total roads length ¹⁾	75%	25%
% of cadaster parcels ²⁾	78%	22%
% of total population ³⁾	78%	22%

Data from: Federal State Statistics Service, ¹⁾2017, ³⁾2019.0 <u>http://www.gks.ru</u> ²⁾EGRP365 Cadaster Services, 2019 <u>https://egrp365.ru/ratings/</u>

Proposed Solution

Benefits of "Quarter-kinematic" Approach

- Long-term coordinate accuracy and self-consistency for the whole country
- \checkmark Constant coordinates for the majority (3/4) of the ground-fixed objects
- ✓ Appropriate accuracy of coordinate geometry without transformation in ¾ of the cases
- Ease of coordinate transformations for the majority of users and acceptable complexity for all
- ✓ Ease of introduction: minimum changes in respect to the existing procedures for static-mode GSC-2011

Next Step

Accounting for a small intra-plate deformations, post-glacial rebound for the regions previously considered "rigid"

Figures from: Database of CORS coordinates and velocities (European Part). Pulkovo Central Astronomical Observatory. <u>http://www.gaoran.ru/russian/database/station/databasev_rus.html</u>

Conclusions

- "Quarter-kinematic" approach is to facilitate implementation of the sustainable national reference frame.
- ✓ The approach is to enable smooth transition of GSC-2011 from the static mode to a semi-kinematic reference frame at the first step.
- The next step is implementation of a time-dependent model and a procedure for accounting for smaller intra-plate deformations, post-glacial rebound for the whole territory.
- Implementation of a highly accurate reference frame will enable greater contribution to ITRF via either
 - Sestablishing of the North East Eurasia Reference Frame NEEREF (Savinykh et al. 2014),
 - ➤ integration into both APREF and ETRF, building "bridge" between them.

Thank you for your attention!

