

Case Study of Japan Vertical Reference Frame Challenge and future plan

Basara Miyahara

(Geospatial Information Authority of Japan)

Hanoi, Viet Nam, 20-21 April 2019

Contents

Motivation

- Current vertical datum in Japan
- Issues of current system

Geoid model for a new height system

- Refine a gravimetric geoid model for Japan
- Issue for further improvement

Airborne gravity measurement in Japan

- Current situation
- Schedule of measurements

Current Vertical Datum in Japan

Definition of the height reference (0m) in Japan

- Mean sea level of Tokyo Bay (tide data of 1873~1879)

Vertical Datum Origin of Japan

- Locates in the center of Tokyo. Built in May 1881.

3

Current Vertical Datum in Japan

Realization of the Vertical Datum in Japan

- Maintained by conducting nationwide leveling survey routinely
- 17,000 benchmarks along 18,000km survey routes throughout Japan

Issues of Current Height System

1) Time consuming and expensive cost

- More than 10 years to cover the whole routes
- Costing \$15M in total has been becoming a big burden for GSI

Surveyed route in past year

Issues of Current Height System

2) Effect of Crustal Deformation

- Crustal deformation is constantly occurring in Japan
- 10 years revision schedule is not enough to maintain accurate elevation

Issues of Current Height System

3) Difficulty of Quick Recovery from Disaster

- Elevation is very important for quick reconstruction after disasters
- Difficult to revise quickly by leveling (e.g. 7 mos. for 3,600km after 2011 Tohoku EQ)
- Post-seismic motion caused another issue (e.g. 40cm uplift 4 years after Tohoku EQ)

Issues of Current Height System

4) Inconvenience of Users

- Users need an additional leveling survey for their purposes

- Large demand of utilize GNSS for determining the elevation

Altitude determination for dam construction

Altitude determination for road reconstruction

Vision of New Height System

Current Japanese height system (since 1883)

Leveling-based system

 Large cost, time consuming, labor intensive, disaster management, user unfriendly…

Jananasa hai

Future Japanese height system (planned from 2024)

Geoid/GNSS-based system

- Cost effective, prompt, quick recovery, useful…
- Leveling for local surveys

Japanese GNSS CORS network (GEONET) consisting of ~1300 stations

Contents

Motivation

- Current vertical datum in Japan
- Issues of current system

Geoid model for a new height system

- Refine a gravimetric geoid model for Japan
- Issue for further improvement

Airborne gravity measurement in Japan

- Current situation
- Schedule of measurements

Challenge for realizing a GNSS/Geoid-based system

Ho = He - Hg

Ho: Elevation (Orthometric Height)He: Ellipsoidal HeightHg: Geoid Height

GNSS provides Ellipsoidal Height \Rightarrow about 1 cm accuracy

Gravimetric geoid model provides Geoid Height \Rightarrow about 8 cm accuracy so far in Japan

Subtraction of **Geoid Height** from **Ellipsoidal Height** provides **Orthometric Height** ⇒ <u>about 8 cm</u> accuracy

Target accuracy of **GNSS/Geoid**-based Orthometric Height is about 5cm ⇒ <u>about 3 cm</u> accuracy Geoid is necessary

More precise 'gravimetric' geoid model is necessary!!

Current gravimetric geoid model

JGEOID2008 (Kuroishi, 2009)

- A current gravimetric geoid model released by GSI
- GRACE-based GGM (GGM02C) + EGM96 were used with land and marine gravity data

Refinement of a gravimetric geoid model for Japan

(-torte)	JGEOID2008	This study (Matsuo, under preparation)
<u>Data</u>		
Global Gravity Model	GGM02C/EGM96 (d/o 2~360)	XGM2016 (d/o 2~719) [Pail et al., 2017]
Land gravity data	268,805	315,876
Marine gravity data	KMS02 [Anderson & Knundsen, 1998] + 569,186 ship-borne data	SS v27.1 [Smith & Sandwell, 2019] + 2,825 ship-borne data
Digital Elevation Model	250 m grid	10 m grid
Computation method		
Gravity reduction	Stokes-Helmert method [Heiskanen & Moritz, 1967]	Stokes-Helmert method [Heiskanen & Moritz, 1967]
Terrain correction & Indirect Effect	Linear and planar approximation [Moritz, 1980]	Linear and planar approximation [Moritz, 1980]
Modification of Stokes' kernel	Meissl (1971)	Featherstone et al. (1998)
Residual terrain model	Not used	Indirectly used [Omang & Forsberg, 2000]
Numerical integration	1D spherical FFT	Direct integration (Newton-Cotes quadrature)

Hanoi, Viet Nam, 20-21 April 2019

Computation of a gravimetric geoid model

Remove-Compute-Restore Stokes-Helmert Scheme

 $N = N_{GGM}^{Co} + N_{Res}^{Co} + N_{IDE}$

N : geoid height N_{\odot}^{Co} : cogeoid height

 \succ N_{GGM}^{Co} : **GGM**-derived cogeoid height

 \Rightarrow Long to medium wavelength components of geoid undulation

- \succ N_{Res}^{Co} : Residual cogeoid height derived from **terrestrial gravity, GGM, and DEM**
 - \Rightarrow <u>Medium to short wavelength components of geoid undulation</u>
- \succ N_{IDE} : Indirect effect derived from **DEM**
 - \Rightarrow Conversion of cogeoid height to geoid height

A new experimental gravimetric geoid model for Japan

Evaluation of the gravimetric geoid model

Improvement of 2.27 cm compared with JGEOID2008

Brief discussion on geoid difference

Gravity data in Japan

Over 300,000 land gravity data are available

- Including other institutions, universities, etc.

But their quality is doubtful

- Most collected in 70~80's
- No absolute gravimeter
- No GNSS (poor coordinate accuracy)
- Effect of several large earthquakes
- Few data in mountainous & coastal areas

How to collect high quality gravity data in short time?

Resolution :

Airborne Gravity Survey

Contents

Motivation

- Current vertical datum in Japan
- Issues of current system

Geoid model for a new height system

- Refine a gravimetric geoid model for Japan
- Issue for further improvement

Airborne gravity measurement in Japan

- Current situation
- Schedule of measurements

Schedule for airborne gravity surveys

Release a new gravity standards net in Japan (JGSN2016)

- Based on absolute gravity values measured after the 2011 Tohoku EQ

- Utilized as reference values for the airborne gravity surveys

20

Schedule for airborne gravity surveys

Preparation for airborne gravity measurements

- Equipment, flight lines, a terrestrial calibration line, survey manuals, etc...

Schedule for airborne gravity surveys

Conduct airborne gravity surveys over Japan

- Cover main land and coastal sea area in 4 years
- Publish collected gravity data and a beta version of geoid model every year

Survey design

- Area : Main land and coastal area (~40km)
- Data lines : Spaced 10km apart
- Cross lines : Spaced 50km apart
- Altitude : 3,000m over normal area 5,000m over Japan Alps
- Aircraft : Cessna 208b Caravan
- Speed : 250km/h

Line length : ~90,000km

Accuracy Target : 1mgal

Schedule for airborne gravity surveys

Prepare for starting the new height system

- Calculate the final geoid model
- Make rules how to utilize the new system

Schedule for airborne gravity surveys

Start the new height system

- Based on the precise geoid model and GNSS
- Expect to stimulate new services using real-time '3D' positioning data

Summary

- GSI is considering to shift to Geoid/GNSS based height system which is more cost effective, prompt in disaster response, user-friendly than.
- For preparation to the shift, GSI has developed a new experimental gravimetric geoid model based on the Remove-Compute-Restore Stokes-Helmert Scheme.
- A new geoid model is consistent with GNSS/leveling with a standard deviation of 5.75 cm, which is 2.27 cm better than the current model (JGEOID2008)
- Large discrepancies between the geoid and GNSS/leveling were found in areas with sparse or poor-quality gravity data (Hokkaido, mountainous regions, and shoreline along inland sea areas).
- In order to further improve the gravimetric geoid model and realize accurate Geoid/GNSS-based vertical datum, we are planning to conduct airborne gravity surveys over the Japanese archipelago from 2019 to 2022.

Backup slides

GGM-derived cogeoid height

- XGM2016 model (d/o 2~719)
- GRS80 system
- Tide-free system
- W0 value from IAG2015 (62,636,853.4 m²/s²)

	Statistics of N_{GGM}^{Co} over the Japanese islands	
Max.	49.350 m	
Min.	20.559 m	
Mean	36.561 m	
SD	4.622 m	

Residual cogeoid height

- 315,876 land + 2,825 shipborne gravity data
- SS v27 marine gravity model
- 10 m-mesh DEM over Japanese islands
 - 250 m-mesh DEM over other regions
- EGM2008 fill-in over other regions

	Statistics of N _{Res} over the Japanese island	
Max.	0.912 m	
Min.	-0.515 m	
Mean	0.046 m	
SD	0.126 m	

Indirect effect

- 2 km-mesh DEM (consistent with spatial resolution of the gravimetric geoid model)
- Linear and planer approximation (consistent with gravimetric terrain correction)

	Statistics of N_{IDE} over the Japanese islands
Max.	0.010 m
Min.	-0.546 m
Mean	-0.017 m
SD	0.034 m

Model

KMS02

SS21.1

Update of data

Satellite gravity data

 Early GRACE-based GGM (GGM02C) \Rightarrow Latest GOCE-based GGM (GOC005S)

Improvement in long wavelength components

Marine gravity model

 Old altimetry-based model (KMS02) \Rightarrow Latest altimetry-based model (SS27.1)

Improvement over ocean areas and along coastal areas

Digital Elevation Model (DEM)

- 250m mesh DEM \Rightarrow 10m mesh DEM
- \rightarrow enabling accurate gravity reduction

Improvement in short wavelength components

250m mesh

10m mesh

GOC

Accuracy

5.20 mGal

3.01 mGal

Improvement of computation method

Modification of Stokes' integral kernel

- Meissl's modification [Meissl, 1971]
 - \Rightarrow FEO modification [Featherstone et al., 1998]

Improvement mainly in long wavelength components

Numerical Integration

- 1D spherical FFT
 - \Rightarrow Direct integration (Newton-Cotes quadrature)

Improvement mainly in mid to short wavelength components

Introduction of Residual Terrain Model

Improvement in short wavelength components

Geoid difference of EGM08 and JGEOID2018 with GNSS/leveling geoid

Hanoi, Viet Nam, 20-21 April 2019