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SUMMARY  

 

Spatio-temporal urban monitoring in large-scale is critical in various engineering applications. 

Periodical building change detection is necessary for applications such as urban and rural 

planning, updating 3D cadastral objects and databases, identification of informal settlements 

and constructions, 3D city modeling and valuation purposes. Automatic building change 

detection is a research topic of high interest including several challenges referring to 

radiometric, geometric and atmospheric corrections, data registration and multi-modal data 

fusion as well as difficulty in using images of complex building structures derived from 

different viewpoints. Deep learning techniques have received increased attention for 

achieving satisfying results in many classification problems. Semantic segmentation is a 

pixel-wise classification of images by implementing a deep neural network scheme such as 

Convolutional Neural Networks (CNNs) under a supervised setting. This paper presents an 

one-shot building change detection procedure using semantic segmentation on scanned 

analogue aerial photos. An augmented time period feature band vector is firstly created by 

fusing 3D geospatial information, that is a 3D point cloud extracted from Dense Image 

Matching (DIM), with the corresponding orthoimage. A small training set for the classes of 

“new buildings”, “unchanged buildings” and “other” is created from the same dataset. The 

training set and the augmented time period feature band vector are fed as input into a CNN, 

which is responsible for the semantic segmentation. The “new buildings” and the “unchanged 

buildings” masks are then processed to eliminate noise taking into account the spatial 

coherency properties. To verify the applicability, usability and functionality of the employed 

procedure, two complex and real-life urban study areas in Greece (Keratea and Perissa) with 

various building structures, pixel resolutions and types of data are selected. The CNN results 

evaluated via pixel-wise success rates of completeness, correctness and quality, and compared 

with conventional and other “shallow” learning paradigms, such as Support Vector Machines 

(SVMs). The derived results show the effectiveness of the proposed deep scheme.  
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1. INTRODUCTION 

1.1 Previous Works 

 

Spatio-temporal urban monitoring in large-scale is critical in various engineering and civilian 

applications such as identification of informal settlements and constructions, disaster 

management, population estimation, urban and rural planning, transportation, augmented 

reality, 3D city modeling and housing value (Karantzalos, 2014). All these subjects are 

actively investigated through 2D or 3D change detection techniques using remote sensing 

data. The wider scope of the automatic change detection is a research topic in over two 

decades. In the literature, two types of approaches called chance enhancement and from-to are 

proposed for the automatic change detection. The chance enhancement approach indicates 

only the position and the magnitude of the change. In contrary, the from-to approach indicates 

not only the position and the magnitude of the change but also its nature (e.g. building 

changes, vegetation changes, etc.). However, the scientific methodologies vary with the 

desired objects of interest (e.g. automatic building change detection) towards the challenge of 

the increasingly greater demands for accurate and cost-effective applications. Towards this 

end, a significant amount of research is still, nowadays, focusing on the design, development 

and validation of novel automated change detection procedures using model-based, graph-

based or machine learning techniques (Radke et al., 2005; Karantzalos, 2014; Vakalopoulou 

et al., 2016). Updating of 3D cadastral objects and databases is also an interesting application 

that automatic building change detection techniques have considered over the years (Pédrinis 

et al., 2015; Koeva and Oude Elberink, 2016; Pedrinis and Gesquière, 2017; Maltezos et al., 

2017). Detection of building changes from multi-temporal earth observation data, still, 

remains a challenge due to i) radiometric and atmospheric correction and calibration, ii) 

geometric correction and data registration, iii) multi-modal data fusion, iv) inherent artifacts 

of the used data, v) differences in viewpoint and surrounding environment and, vi) complex 

shape and size of the building structures (Rottensteiner et al., 2014; Gilani et al., 2016). 

 

Dependent on the data source employed, building change detection techniques can be 

categorized into three groups: i) the ones that use airborne or satellite imagery data, ii) the 

ones that exploit three-dimensional information and iii) those that combine both of data 

sources. The first group fully exploits image information as well as available additional 

information associated with indices (e.g. vegetation indices), band ratios, etc (Bourdis et al., 

2011; Barazzetti et al., 2015). The second group implements direct 3D point cloud processing 

either derived from Dense Image Matching (DIM) techniques or by LIght Detection And 
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Ranging (LIDAR) data (Dini et al., 2012; Xu et al., 2013; Nebiker et al., 2014; Awrangjeb et 

al., 2015) or a combination of the two (Du et al., 2016). The third group fuses image and 3D 

information to improve the building change detection accuracy (Rottensteiner, 2007; 

Ioannidis et al., 2010; Tian and Reinartz, 2013; Sarp et al., 2014; Qin et al., 2015; Hron and 

Halounova, 2015). The last group is considered appropriate for detecting 2D and 3D building 

changes associated with informal constructions. According to the existing legal framework, 

‘informal construction’ in Greece is characterized by any construction that i) exists without a 

building permit, ii) has any kind of excess or violation to the building permit and iii) is in 

violation of any valid urban and spatial regulation, regardless of the existence of a building 

permit (Ioannidis et al., 2010).  

 

The most common problems of using only image information for building change detection 

are the presence of shadows and the fact that urban objects usually present similar pixel 

values (e.g., building rooftops vs. roads, or vegetation vs. vegetation on building rooftops). 

On the other hand, the use of only 3D data provides often incorrect assignments of building 

changes when vegetation is significantly grows up between two time periods. To remove low 

vegetation or insignificant man-made objects or cars, height thresholds (e.g. above 2 m) are 

used. However, a confusion of vegetation with similar height values with buildings still exists. 

Furthermore, areas of small buildings present low building change detection accuracy due to 

local under-sampling or mismatches using LIDAR data or DIM point clouds respectively. To 

overcome these issues, the recent research outcomes focus on fusing Red, Green, Blue (RGB) 

images and additional information, e.g., Near Infrared band (NIR) as well as 3D information 

from LIDAR for each time period (Beumier and Idrissa, 2012; Peng and Zhang, 2016). 

However, in this case, several research challenges arise such as i) the co-registration of the 

data coming from different sources, ii) the additional acquisition and processing cost of the 

multi-modal information, and iii) the fact that LIDAR data or additional information are not 

always available (e.g. Cadastral agencies commonly have scanned analogue aerial photos or 

Red, Green, Blue, Near Infrared (RGBNIR) aerial images).  

 

1.2 Our Contribution 

 

This paper presents a procedure of one-shot building change detection framework through 

semantic segmentation using scanned analogue aerial photos. It has been proven in machine 

learning research that deep learning algorithms, such as Convolutional Neural Networks 

(CNNs), are able to emulate human brain operation (Yu and Deng, 2011). CNNs are an 

extension of Artificial Neural Networks (ANNs), mainly used in image analysis, which 

simplifies the feature extraction process (Crommelinck et al., 2016). Also, have been shown 

to be very efficient for semantic segmentation for many remote sensing applications 

(Makantasis et al., 2015; Marmanis et al., 2015; Vakalopoulou et al., 2015; Sakurada et al., 

2015; Amin et al., 2016; Fujita et al., 2017). Deep CNN classifiers present advantages 

compared to conventional shallow architectures or model-based approaches (Doulamis and 

Doulamis, 2012). Semantic segmentation is a pixel-wise classification of images by 

implementing a deep neural network technique under a supervised setting (Amit et al., 2015). 
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The main advantage of the machine learning approaches is that they are flexible and data 

driven methods, requiring only training samples (this also makes machine learning ideal for 

non-expert users) to generalize well the building change properties and thus to perform an 

accurate semantic segmentation. On the contrary, model-based schemes consist of many 

parameters needed to be tuned for each study area. Therefore supervised learning paradigms 

provide higher generalization capabilities.  

 

On the other hand, scanned analogue aerial photos are still a source of information for 

surveyor engineers and Urban Planning and Cadastral agencies as historically record the 

urban land-uses and development of cities. 2D or 3D building change detection through i) 

direct ground-field measurements and inspections, ii) photointerpretation, and iii) stereoscopic 

observations in digital photogrammetric workstations, may be expensive, laborious and time 

consuming. Compared to the aforementioned traditional methods, the proposed 

methodology provides a cost-effective mapping of building changes. The main contributions 

are:  

 The full exploitation of one type of data (scanned analogue aerial photos) that have i) 

poor and/or limited spectral capabilities, ii) medium quality and iii) no additional 

information.  

 The fusion of scanned analogue aerial photos with modern derived remote sensing 

data, e.g., derived from unmanned aerial vehicles (UAVs). 

 The fusion of image and 3D information for each time period dataset in order to 

extract an augmented time period feature band vector. The 3D information is 

expressed as a 3D point cloud extracted from innovative techniques such DIM, while 

the image information is expressed as the corresponding orthoimage.   

 The use of a sophisticated deep learning model in order to indentify, in one-shot, 

building changes in terms of the classes of “new buildings”, “unchanged buildings” 

and “other”.  

  

2. BUILDING CHANGE DETECTION USING CNN 

 

The workflow of the processing procedure is shown in Figure 1. Firstly, an augmented time 

period feature band vector is created containing the normalized Digital Surface Model 

(nDSM) and the orthoimage of each time period. Then a training set for the classes of “new 

buildings”, “unchanged buildings” and “other” is created from the same dataset. The training 

set and the augmented time period feature band vector are fed as input into a CNN, which in 

turn is responsible for the semantic segmentation. Finally, a post process is carried out in 

order to extract the final “new buildings” and “unchanged buildings” masks. 
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Figure 1. Workflow of the processing procedure 

 

2.1 Augmented Time Period Feature Band Vector for Building Change Detection 

 

To increase the building change detection accuracy, fusion of image and 3D information is 

considered for each time period dataset. To this end, an augmented time period feature band 

vector, denoted as It, is created which is fed as input into the deep learning framework. The It 

contains the image and the 3D information for both time periods in terms of bands stack. Let 

us denote as I(x,y)≡I(q)
 
an image, expressing a transformation I:Κ1→Κn where n denotes the 

nth image band stacks. For example for an RGB image n=3 while for a grayscale image n=1. 

Each image band of each time period can be considered as an element of the augmented time 

period feature band vector for building change detection. To avoid confusions during the 

classification performance, the normalized Digital Surface Model (nDSM) is extracted from 

the DIM/DSM of each time period. Firstly the cloth simulation technique (Zhang et al., 2016) 

was performed to detect the ground points from the DIM point cloud. Then, a closest point 

method was implemented between the detected ground points and the DIM point cloud setting 

the height values of the ground points equal to zero and shifting the remaining respectively. A 

rasterization to the estimated point cloud is then takes place to create the nDSM. The nDSM 

of each time period, denoted as Ih, is used as additional element at the It representing the 3D 

information. It should be mentioned that each feature band is normalized in the range of 0-1 in 

order to increase the classification accuracy. In this study, the image I is expressed by the 

generated orthoimage of each time period transformed to a grayscale band (see Figure 1 and 

Table 1). The augmented time period feature band vector of a dataset is given as 

  

                                          

time period  1 time period  2time period  1 time period  2

t h hI I  I  I  I 
 

                                  (1) 

 

2.2 CNN Structure 

 

A CNN classifier has two main components; the convolutional layer and the classification 

layer. A convolutional layer is essentially a feature extractor that employs convolution filters 

(i.e., transformations) to the input data, e.g., in this paper to the augmented time period feature 

band vector. These extracted features are able to optimize the classification performance. 
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Spatial coherency is an important element of the transformations involved in the 

convolutional layer. This is an important property of a deep CNN model since spatial 

characteristics significantly affect building change detection accuracy. The aim of the 

classification layer is actually a supervised learning paradigm with a capability of 

transforming the inputs from the convolutional layer to desired outputs, i.e., the labeled 

classes. Therefore, a CNN classifier, instead of a shallow machine learning method, first 

filters the input data in a way to maximize the classification accuracy, and then performs the 

classification. The output of the CNN is a classified image on a pixel-level including 

information associated with the label of each class. In this study the three desirable classes are 

i) new buildings, ii) unchanged buildings and iii) other.    

 

2.2.1 Implementation details 

 

We assume that the label of the class of the pixel q at location (x,y) must be the same to the 

label of the patch centered at location (x,y). Thus, the corresponding neighborhood s was set 

equal to 5. The first layer of the proposed CNN is a convolutional layer with C1=3×n 

trainable filters of dimension 3×3, where n is the dimensionality of the augmented time period 

feature band vector It. The first convolutional layer is followed by a second convolutional 

layer with C2=3×C1 trainable filters of dimension 3×3. The second convolutional layer 

delivers a vector with C2 elements, which is fed as input to a Multiple Layer Perceptron 

(MLP) classifier (Makantasis et al., 2015). Concerning the training phase, the standard back-

propagation algorithm was used. We split the labelled dataset into three mutually exclusive 

subsets; the training, the validation and the test dataset. The training set is used to train the 

network, the validation set to evaluate the CNN model during the training and the test set to 

benchmark the ability of the CNN model in data outside the training and validation set. In this 

study the training and the validation  dataset were selected as 80% and 20% respectively. The 

implementation of the deep learning framework was made using the MATLAB 

(https://in.mathworks.com/products/matlab.html) computing environment and the PYTHON 

programming language (https://www.python.org/). A laptop computer (CPU with 2.6 GHz 

and 16GMemory) with a graphic card NVIDIA GeForce GTX 960M (640 CUDA cores) was 

used to process the test datasets. 

 

2.3 Post-Process 

 

To eliminate possible noise of the semantic segmentation results, a post processing to the 

output of the classifier is used taking account spatial coherency properties. Initially, only the 

pixels associated with the classes of “new buildings” and “unchanged buildings” are extracted 

creating the corresponding “new buildings” and “unchanged buildings” masks. Then, a 

morphological median operator is implemented at each mask. Further, area criteria are 

considered depending on the pixel resolution (i.e., the scale) of the used image datasets. The 

implementation of the area thresholding process is to filter small insignificant buildings or 

man-made structures. 
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3. EXPERIMENTAL RESULTS 

 

3.1 Study Areas and Test Datasets 

 

To verify the applicability, utility and functionality of the proposed deep framework, two 

complex and real-life urban study areas with various kinds of buildings structures, pixel 

resolutions and types of data are selected. The selected study areas are located at Keratea area 

and Santorini island (Perissa area) in Greece (Figure 2). The Keratea is a sub-urban area with 

small detached houses that consisted of sloped or flat surfaces but also has sporadically some, 

often high, vegetation. Santorini contains mainly hotel resorts with continuous and complex 

building structural system with constant depth discontinuities, small extensions or additions of 

major buildings as well as several objects on the rooftops such solar water heaters, etc. The 

type of vegetation is characterized as moderate. It should be noted that both study areas have 

dynamic changes through the recent years associated with new buildings and not with 

buildings that do not exist anymore (i.e., demolished buildings). Since the proposed 

methodology is a data driven and from-to approach, the available classes of “new buildings”, 

“unchanged buildings” and “other” are considered sufficient for the examined study areas. In 

case that the study areas had demolished buildings, an additional class named “demolished 

buildings” and its corresponding training samples should be created.  

 

 
Figure 2. Study areas 

 

 Study areas 

 Keratea  Santorini 

 1995 (Time period 1) 2001 (Time period 2) 1995 (Time period 1) 2012 (Time period 2) 
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Scale 1:12000 

3 Scanned analogue 
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1 Scanned analogue 

stereo-pair 

Scale 1:5000 

59 Multiple/Digital 

images 

Focal length 153.35 mm 153.35 mm 305.13 mm 28.97 mm 

Forward 

overlap 
70% 70% 60% 60% 
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Block tile 

(pixels) of the 

area of interest 

1166×1791 2086×2046  

Augmented 

time period 

feature band 

vectors (It) 

   Grayscale1995
1* 

   +nDSM1995 

   +Grayscale2001
2* 

   +nDSM2001 

           ↓ 
    Composition of the 

           It: 4 bands 

 

1*The R1995/G1995/B1995 

transformed to one 

grayscale band, i.e., 

Grayscale1995 
 

2*The R2001/G2001/B2001 

transformed to one 
grayscale band, i.e., 

Grayscale2001 
 

   Grayscale1995 

   +nDSM1995 

   +Grayscale2012
3* 

   +nDSM2012 

           ↓ 
    Composition of the 

           It: 4 bands 

 

3*The R2012/G2012/B2012 

transformed to one 
grayscale band, i.e., 

Grayscale2012 

Labeled 

training set of 

classes 

New buildings:1 

Unchanged buildings:2 

Other:3 

New buildings:1 

Unchanged buildings:2 

Other:3 

Table 1. Flying parameters and supplementary information about the selected datasets 

 

Table 1 shows the flying parameters, aerial triangulation accuracy and supplementary 

information about the selected datasets of Keratea and Santorini. For the case of Keratea, 

overlapped scanned analogue RGB aerial images of two time periods (1995 and 2001) were 

used in order to extract the DIM/DSMs and the corresponding RGB orthoimages. For the case 

of Santorini, a scanned analogue greyscale aerial stereo-pair (time period 1995) and 

overlapped RGB digital aerial images derived from a UAV (time period 2012) were used to 

extract the DIM/DSMs and the corresponding orthoimages. Figure 3 shows the extracted 

coloured DIM point clouds and the generated orthoimages of the areas of interest. The 

Ground Sample Distances (GSDs) of each dataset was selected the same for each time period 
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for the proper composition of the augmented time period feature band vector. The DIM point 

clouds were extracted using the Erdas Imagine software 

(http://www.hexagongeospatial.com/products) while the nDSMs were extracted through 

CloudCompare (http://www.danielgm.net/cc/). 

 

 

___    

 
 

 
 

 

 
 

 
 

 
 

__   

Figure 3. DIM point clouds and orthoimages of the study areas  

 

3.2 Training Sets 

 

Three classes are used for the semantic segmentation: “new buildings”, “unchanged 

buildings” and “other”. The collecting training set varies depending on the complexity and 

pixel resolution of the image scene. From the available data, we collect a training set of 

representative samples of the three classes. This set consists of sample polygons for data of 

each class (Figure 4). The class “new buildings” contains buildings that were constructed at 

the second time period while the class “unchanged buildings” contains buildings that remain 

unchanged at both time periods. The class “other” contains all the other urban objects (either 

they have undergone changes over the time or not) that are not correspond with buildings. 

Such urban objects are ground, high and low vegetation, cars, insignificant structures, etc). To 

improve the semantic segmentation process, shadowed areas of each class are also included to 

the corresponding training sample polygons. In addition, the training sample polygons are 

spatially created to improve representativity of each class and take into account the spatial 

coherency of the content. Only a very small percentage of the total data in the dataset, denoted 

as Psum, has been included in the learning set. Psum equals to Psum= Pnb + Pub + Poth where 

subscripts “nb”, “ub” and “oth” refers to the classes of “new buildings”, “unchanged 

buildings” and “other” respectively. The exact values selected for the learning set are shown 

in Table 2. 

  

Keratea 1995 Santorini 1995 

Keratea 2001 Santorini 2012 

DIM point cloud Orthoimage DIM point cloud Orthoimage 

DIM point cloud Orthoimage DIM point cloud Orthoimage 
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Figure 4. Collected training sets for the areas of interest 

 
 Class:             

  New buildings 

Class:   

Unchanged buildings 

Class:  

Other Psum 

Study area Pnb Pub Poth 

Keratea 0.04% 0.07% 0.21% 0.33% 

Santorini 0.30% 0.25% 0.79% 1.35% 

Table 2. Learning set (Psum) expressed in percentage of the total data in the dataset 

 

3.3 Semantic Segmentation and Evaluation  

3.3.1 Semantic Segmentation and Post-process 

 

As we stated above, the output of the CNN is a classified image on a pixel-level including 

information associated with the label of each class. Figure 5 shows the semantic segmentation 

results of the two study areas superimposed to the corresponding orthoimages of the second 

time period.  

  

Keratea 1995  Santorini 2012 
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Figure 5. Semantic segmentation results applying the CNN 

 

It should be noted that the same CNN was implemented for the two study areas. 

Concerning the computational time: Keratea was learning in 3 minutes while the test was 

executing in 30 seconds and Santorini was learning in 15 minutes while the test was about 3 

minutes. After the semantic segmentation, the post-process discussed in Section 2.3 is 

implemented to extract the “new buildings” and “unchanged buildings” masks. The 

morphological median operator was implemented twice with a window size of 7×7 at each 

mask. The area thresholds that were used were 20 m2 and 4 m2 for the case of the Keratea and 

the Santorini datasets respectively. 

 

3.3.2 Evaluation and comparisons 

 

To quantitatively evaluate the extracted “new buildings” and “unchanged buildings” masks, 

the success rates of completeness (Cm), correctness (Cr) and quality (Q) are used using 

reference data. According to the ISPRS guidelines (Rutzinger et al., 2009) 

 

     

m r100;  100;  100
TP TP TP

C  (%) = C  (%) = Q (%) = 
TP FN TP FP TP FP FN

  
   

  (2) 

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively. 

This paper aims to assess the performance of automatic techniques, such as machine learning 

for the detection of building changes from remote sensing and photogrammetric products. 

Compared to topographic maps, such products have different characteristics concerning the 

building structures, i.e., differences in viewpoint, occlusions, 2.5D elevation models, etc. 

Thus, the reference data did not acquire from ground-field surveying processes but were 

manually digitized using the orthoimages and the corresponding DIM/DSMs.  

Keratea  Santorini  
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 The effectiveness of the adopted CNN is also tested in comparison to Support Vector 

Machine (SVM)-based methods (Mountrakis et al., 2011). More specifically, the Linear 

kernel SVM and the Radial Base Function (RBF) kernel SVM classifiers were implemented. 

For fairness reasons, the same It and labeled training set for each study area as well as the 

same post-process were considered. Figures 6 to 9 show the evaluation results of the extracted 

“new buildings”  and “unchanged buildings” masks of each study area applying the CNN, the 

Lineal SVM and the RBF SVM; the corresponding per-area accuracies in terms of 

completeness (Cm), correctness (Cr)  and quality (Q)  rates are shown in Table 3.   

 

Commonly, the DIM point clouds present surface roughness and local deformations at the 

boundaries of the objects due to poor performance of the stereo image matching algorithms 

(mismatches) (Maltezos and Ioannidis, 2015). The main problems during the stereo image 

matching procedure are associated with the geometry of each stereo-pair as well as with 

radiometric differences (e.g., shadows and texture-less areas) and complexity of the scene 

(e.g., intense relief, depth discontinuities/steep slopes and repetitive pattern of objects). The 

geometry of a stereo-pair (i.e., the height to base ratio) is fully connected with the presence of 

occlusions as well as with the spatial blend intersection in the 3D space (e.g., a small height to 

base ratio increases the uncertainty σz). The perfomarnce of the DIM process is also highly 

affected from the quality of the used imagery. Scanned analogue aerial photos usually present 

radiometric deformations and noise (speckles) as well as suffer from paper extensions due to 

extensive use. Since scanned analogue aerial photos were used, at least for one time period, 

the extracted DIM point clouds present significant local mismatches. The situation is 

aggravated at building change detection since two time period dataset are used. Such 

problems negatively affect not only the extracted DIM/DSM (e.g., presence of excessive 

interpolations during the rasterization) but also the generation of the corresponding 

orthoimages (e.g., deformed objects in the scene). 

 

 

     
Figure 6. Pixel-wise results of class “new buildings”  
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Figure 7. Pixel-wise results of class “unchanged buildings”  

 

 

    
Figure 8. Pixel-wise results of class “new buildings”  

 

 

    
Figure 9. Pixel-wise results of class “unchanged buildings”  

 

Further, inherent artifacts of the used data and differences in viewpoint are also affect the 

classification performance. Characteristic examples are shadowed areas, relief's diversions of 

high buildings due to different off-nadir angles of the aquired images, pixel resolution and 

misregistration effect (e.g., remaining systematic errors). The FN of the “unchanged 

buildings” are associated with mismatches during the DIM (i.e., insufficient 3D 

reconstruction of a building at one or both time periods) and incorrect detection of the ground 

points during the calculation of the nDSM (e.g., incorrect assigment of buildings as ground at 

one or both time periods). The FP of the “new buildings” contain i) pixels that assigned as 
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“new buildings” while should be assigned as “unchanged buildings”, ii) artifacts coming from 

occlusions or mismatches during the DIM at one time period expressed as excessive 

interpolations during the rasterization of the nDSMs (Du et al., 2016) and, iii) insignificant 

objects (e.g. umbrella arrays) that present similar characteristics (height and image pixel 

values) with building changes. A representative case of  FP of the “new buildings” is shown 

in Figure 10. The FN of the “new buildings” mostly come from insufficient 3D reconstruction 

of a building during the DIM of the second time period or by lack of representative training 

samples. The FP of the “unchanged buildings” are due to excessive interpolations during DIM 

and remaining misregistration errors between the datasets of both time periods.  

 

As is observed in Table 3, CNN provides better classification performance compared to the 

results provided by the SVM classifiers. In particular, CNN achieved balanced average 

quality (Q) rates of “new buildings” (64.6%) and “unchanged buildings” (77.0%). Instead, the 

SVM classifiers presented unbalanced quality (Q) rates achieving low classification 

performance to “new buildings”. This shows the applicability and the functionality of the 

CNN to detect building changes in terms of various kinds of buildings structures, pixel 

resolutions and types of data. It should be mentioned that the total computational time for 

each study area using the SVM classifiers was less than 1 minute. Although the CNN weak in 

computational complexity compared to the SVM classifiers, the use of a better CPU and more 

RAM capacity can significantly speed the processing. Furthermore, there are methods that 

accelerate the learning phase (Doulamis and Voulodimos, 2016). Τo overcome 

misclassification problems and therefore to achieve higher success rates, more representative 

training samples can be utilized to optimize class predictions. Furthemore, additional 

information coming from GIS or aerial/satellite data (with a proper pixel resolution) for both 

time periods can be used. Also, additional morphological criteria can be performed to 

eliminate FP assignments (Du et al., 2016). 
 

  CNN Linear SVM RBF SVM 

Study 

area 
Classes 

Cm 

(%) 

Cr 

(%) 

Q 

(%) 

Cm 

(%) 

Cr 

(%) 

Q 

(%) 

Cm 

(%) 

Cr 

(%) 

Q  

(%) 

Keratea 

New buildings 75.0 67.8 55.3 83.4 53.9 48.7 79.0 43.00 38.6 

Unchanged buildings 81.9 83.2 70.3 68.2 91.8 64.3 79.3 86.6 70.7 

Santorini 
New buildings 87.0 83.0 73.8 79.4 78.7 65.3 76.1 72.5 59.0 

Unchanged buildings 92.5 89.7 83.7 94.3 87.0 82.6 92.1 90.8 84.2 

 
Average                

New buildings 
81.0 75.4 64.6 81.4 66.3 57.0 77.6 57.8 48.8 

 
Average           

Unchanged buildings 
87.2 86.5 77.0 81.3 89.4 73.5 85.7 88.7 77.5 

Table 3. Per-area accuracies of classes “new buildings” and “unchanged buildings” obtained 

by the considered methods 
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Figure 10. Example of a misclassified case of building change 

 

4. CONCLUSIONS 

 

This paper proposes a novel method for detecting building changes, in one-shot, using 

scanned analogue aerial photos. A deep scheme based on Convolutional Neural Networks 

(CNNs) was adopted to classify two complex and real-life urban study areas in Greece to the 

classes of “new buildings”, “unchanged buildings” and “other”. The CNN was fed with a very 

small training set (under the 1.5% of the total data of each study area) and with an augmented 

time period feature band vector consisted of image and 3D information. The proposed method 

is used only for the detection of changes, in our case the new constructions. It cannot tell 

whether a new construction is formal or not. A further examination of the existence (or not) of 

a building permit is needed. 

 

Compared to conventional and shallow learning paradigms such as SVMs, the CNN achieved 

higher and balanced average quality rates (about 65% and 77% for the classes of “new 

buildings” and “unchanged buildings” respectively). This shows the flexibility and efficiency 

of the CNN to identify unchanged buildings as well as new constructions and small 

extensions or additions of major buildings. However, some buildings were missed and some 

urban objects were incorrectly identified as buildings. This is mainly due to the inherent 

artifacts of the used data such as shadows, deformations at the boundaries of the objects 

during the DIM and quality of the scanned analogue aerial photos. Due to these inherent 

artifacts, the building outlines are not accurately shaped with sharp edges (see FP and FN near 

the building boundaries in Figures 6 to 9); building reconstruction techniques can be used to 

optimize the building boundaries.  

 

The CNN results are considered to be satisfactory as provide reliable building change 

detection maps that are especially useful for an initial spatial-temporal analysis and predictive 

assessment. Once such high spatial-temporal probabilities of new and unchanged buildings 

are localized, more accurate processes may be used to extract the final accurate new and 

unchanged buildings. Future work is needed to explore and evaluate the performance of 

several deep learning schemes for building change detection using various test sites, pixel 

resolutions and types of remote sensing data. 
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