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SUMMARY  

Terrestrial laser scanning (TLS) has proved to be a suitable technique for geodetic monitoring 

of infrastructure buildings such as bridges as it allows to determine object changes and 

deformations rapidly with high precision as well as high spatio-temporal resolution. In addition, 

this monitoring includes the evaluation of their life cycle and the developing of concepts to 

increase their expected life time. In an interdisciplinary project, which is being conducted with 

partners from industry and research, an historic masonry arch bridge over the river Aller near 

Verden (Lower Saxony, Germany) has been investigated. Besides different other sensors, a 

terrestrial laser scanner was used to measure the vertical deflection of the bridge construction 

under different load scenarios. The resulting 3D point clouds have been spatially approximated 

using approaches of free-form curves and surfaces, based on B-Splines. The selection of the 

degree of the basis functions and of the number of control points has a considerable and crucial 

effect on the estimating results of the B-Splines. To assess the statistical significance of the 

differences displayed by the estimates for different model choices, two non-nested model 

selection tests as well as information criteria will be adopted and applied. 
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1. INTRODUCTION 

 

Free-form curves and surfaces have been used as part of a standard approximation method for 

point clouds in many engineering disciplines in the past decade. The point clouds are captured, 

e.g., by TLS, which has been found to be a useful observation technique in different geodetic 

applications such as 3D surface modeling, monitoring and deformation analysis. For example, 

Koch (2009), Harmening & Neuner (2015), and Bureick et al. (2016) modeled the captured 

point clouds by means of B-Splines and Non-uniform rational B-Splines (NURBS). In addition, 

Bureick et al. (2016) and Xu et al. (2017) used B-Splines for the monitoring of different 

structures, such as rails and arches. However, the determination of the knots in B-Spline 

approximation (known as knot adjustment problem) affects the estimation of the curve and 

surface significantly. Therefore, in Bureick et al. (2016) and Bureick & Alkhatib (2018) 

different approaches based on Monte Carlo techniques and genetic algorithms are developed. 

Both approaches show an optimal selection and optimization of knot vectors for curve 

approximation.  

 

The second important issue for an optimal B-Spline approximation is the adequate number of 

control points, known as model selection. In case of B-Spline surfaces, model selection 

comprises a suitable choice of the degree of the basis functions as well as the number of control 

points in two different directions. In many cases this task is solved by applying an information 

criterion, like the Akaike information criterion (AIC) or the Bayesian information criterion 

(BIC). Harmening & Neuner (2016) applied structural risk minimization, originating from 

statistical learning theory to determine the optimal degree and number of control points of B-

spline curves. In Harmening & Neuner (2017) this approach is extended to B-spline surfaces. 

In this paper we apply two non-nested model selection tests, which are based on an information 

criterion: the Vuong’s testing (Vuong,1989) and the Clarke’s testing approach (see, e.g., Clarke, 

2007). Two models are non-nested or separate if one model cannot be obtained as limit of the 

other (or one model is not a particular case of the other). The Vuong test has been widely used 

in non-nested model selection under the normality assumption. While the Vuong test 

determines whether the average log-likelihood ratio is statistically different from zero, the 

distribution-free test proposed by Clarke determines whether or not the median log-likelihood 

ratio is statistically different from zero. Two B-Spline models with different degrees or control 

points ("model I" and "model II") are non-nested because the parameters in model I are not a 

subset of the parameters in model II. The modification of the degree or the number of control 

points leads to changing the number of knots, resulting in different basis functions. Zhao et al. 

(2018) applied Voung’s hypothesis tests for model selection in B-Spline surface approximation.  
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This paper focuses on the optimal selection of the most parsimonious, yet sufficiently accurate, 

parametric description of a structure based on TLS measurements by changing the number of 

control points and by selecting the optimal approach for the determination of the knot vectors.  

 

2. MATHEMATICAL BASICS 

 

2.1 B-Spline surfaces 

A 3D point 𝑺(�̅�, �̅�) lying on a B-Spline surface is defined by:  

𝑺(�̅�, �̅�) = [𝑥(�̅�, �̅�), 𝑦(�̅�, �̅�), 𝑧(�̅�, �̅�)]𝑇 = ∑ ∑ 𝑁𝑖,𝑝(�̅�)𝑁𝑗,𝑞(�̅�)𝒙𝑖,𝑗

𝑙

𝑗=0

𝑛

𝑖=0

 𝑤𝑖𝑡ℎ 𝒙𝑖,𝑗

= [𝑥𝑖,𝑗, 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗]. 

Eq. 1 

𝑺(�̅�, �̅�) is calculated by the totalised linear combinations of the basis functions 𝑁𝑖,𝑝(�̅�), 𝑁𝑗,𝑞(�̅�) 

and the control point array 𝒙𝑖,𝑗. Altogether (𝑛 + 1) × (𝑙 + 1) linear combinations and therefore 

the same amount of control points and basis functions contribute to 𝑺(�̅�, �̅�). The position of 

𝑺(�̅�, �̅�) on the B-Spline surface is defined by the location parameters �̅� and �̅�. �̅� is the location 

parameter in the first direction (�̅�-direction) and �̅� is the location parameter in the direction 

perpendicular to the �̅�-direction (�̅�-direction). The degrees of the basis functions in �̅�-direction 

and �̅�-direction are defined by 𝑝 and 𝑞, respectively. In �̅�-direction the basis functions 𝑁𝑖,𝑝(�̅�) 

depend on �̅�, 𝑝 and the, so called, knot vector 𝐔. 𝐔 consists of  𝑚 + 1 (with 𝑚 = 𝑛 + 𝑝 + 1) 

knots, which are arranged in a non-decreasing order: 

𝐔 = [𝑢0, . . . , 𝑢𝑚] 𝑤𝑖𝑡ℎ 𝑢𝑖 ≤ 𝑢𝑖+1, 𝑖 ∈ {0, . . . , 𝑚 − 1}. Eq. 2 

In �̅�-direction the basis functions 𝑁𝑗,𝑞(�̅�) depend on �̅�, 𝑞 and the knot vector 𝐕. 𝐕 consists of 

𝑟 + 1 (with 𝑟 = 𝑙 + 𝑞 + 1) knots, which are also arranged in a non-decreasing order. 

Cox (1972) and de Boor (1972) developed a recursive function to calculate the basis functions. 

For 𝑁𝑖,𝑝(�̅�) the recursive function reads as follows: 

𝑁𝑖,0(�̅�) = {
1 𝑖𝑓 𝑢𝑖 ≤ �̅� ≤ 𝑢𝑖+1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.           

 

Eq. 3 

𝑁𝑖,𝑝(�̅�) =
�̅� − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
𝑁𝑖,𝑝−1(�̅�) +

𝑢𝑖+𝑝+1 − �̅�

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(�̅�). 

𝑁𝑗,𝑞(�̅�) is calculated analogously.  

When a B-Spline surface is applied to approximate a 3D point cloud, beside model selection 

(see Sec. 2.2) usually the 3 main steps:  

• parametrisation (Sec. 2.1.1),  

• knot vector determination (Sec. 2.1.2) and  

• control point estimation (Sec. 2.1.3) 

have to be accomplished.  

 

 

Statistical Evaluation of the B-Splines Approximation of 3D Point Clouds (9634)

Hamza Alkhatib, Boris Kargoll, Jens-André Paffenholz and Johannes Bureick (Germany)

FIG Congress 2018

Embracing our smart world where the continents connect: enhancing the geospatial  maturity of societies 

Istanbul, Turkey, May 6–11, 2018



 

 

2.1.1 Parametrization 

 

Parametrization comprises the determination of location parameters �̅� and �̅� for each point in 

the 3D point cloud. In case of an irregularly shaped point cloud this task may become quite 

tricky and sophisticated methods have to be applied (see for instance Harmening & Neuner 

(2015), Ma & Kruth (1995)). Since we analyse a regularly and rectangularly shaped point cloud, 

we use the simple technique described in Piegl & Tiller (1997). The point cloud represents a 

rectangular grid with 𝑠 rows and 𝑡 columns. For each row, the 𝑡 location parameters �̅�1
𝑖
 to �̅�𝑡

𝑖  

(with 𝑖 = 1, . . . , 𝑠) are calculated using the chord length method, mentioned in Piegl & Tiller 

(1997). In this method the Euclidean distance between adjacent points is calculated. The 

totalised Euclidean distance so far is assigned to each point. At the end this value is normalized 

by a division through the totalised Euclidean distance assigned to the last point of the row. The 

average of the 𝑠 realisations of �̅�1
𝑖
 to �̅�𝑡

𝑖  represents the parametrisation in �̅�-direction: 

�̅�𝑘 =
1

𝑠
∑ �̅�𝑘

𝑖  with 𝑘 = 1, . . . , 𝑡𝑠
𝑖=1 . Eq. 4 

The calculation of the parametrisation in �̅�-direction proceeds in an analogous manner. 

 

2.1.2 Knot vector determination 

 

An important step in B-Spline surface approximation is the determination of suitable knot 

vectors 𝐔 and 𝐕. This so called knot adjustment problem is known to be a multimodal, 

multivariate continuous nonlinear optimisation problem (see for instance Dierckx (1993), 

Gálvez et al. (2015), Bureick & Alkhatib (2018)). Due to a lack of an analytic expression for 

optimal knot locations, plenty of methodologies have been developed to solve the knot 

adjustment problem. For most of the methodologies the capability was shown for B-Spline 

curve approximation. The extension to B-Spline surfaces is often neglected, but assumed to be 

straightforward. In this paper we selected 2 methods and applied respectively extended them to 

B-Spline surfaces. The first method is the "knot placement technique"(KPT) described in Piegl 

& Tiller (1997, p. 412), which ensures that in each knot span at least one location parameter is 

placed. This leads to well conditioned matrices in the subsequent control point estimation. In 

�̅�-direction this method reads as follows: 

𝑑 =
𝑡

𝑛 − 𝑝 + 1
 

𝑖 = int(𝑗𝑑) 
𝛼 = 𝑗𝑑 − 𝑖 

𝑢𝑝+𝑗 = (1 − 𝛼)�̅�𝑖−1 + 𝛼�̅�𝑖  with 𝑗 = 1, . . . , 𝑛 − 𝑝 

Eq. 5 

The second method we applied, is the Evolutionary Monte Carlo Method (MCM) described in 

Bureick et al. (2016) and Bureick & Alkhatib (2018). In this method random knot vectors are 

generated iteratively and applied on the point cloud to be approximated. The knot vectors which 

yield the best results are stored in a population. After some iterations this population is used to 

calculate a probability. The subsequent knot vectors are randomly chosen from this probability. 
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On the one the meta-heuristic approach MCM yields significantly better results than the KPT. 

On the other hand the computational costs of MCM are much higher. 

 

2.1.3 Control point estimation 

 

The final step in the approximation process is the control point estimation. When the previous 

steps of parametrization and knot vector determination are accomplished, the unknown control 

points are optimally estimated in a Gauss-Markov model (GMM): 

𝐥 = 𝐀𝐱 + 𝛆. Eq. 6 

The design matrix 𝐀 is a block diagonal matrix consisting of the identical matrices 𝐀𝑥, 𝐀𝑦 and 

𝐀𝑧: 

𝐀𝑥 = 𝐀𝑦 = 𝐀𝑧 = [

𝑁0,𝑝(�̅�1)𝑁0,𝑞(�̅�1) ⋯ 𝑁𝑛,𝑝(�̅�1)𝑁𝑙,𝑞(�̅�1)

⋮ ⋱ ⋮
𝑁0,𝑝(�̅�𝑡)𝑁0,𝑞(�̅�𝑠) ⋯ 𝑁𝑛,𝑝(�̅�𝑡)𝑁𝑙,𝑞(�̅�𝑠)

] 

𝐀 = [

𝐀𝑥 𝟎 𝟎
𝟎 𝐀𝑦 𝟎

𝟎 𝟎 𝐀𝑧

] 

Eq. 7 

The observation vector is set up by the point cloud to be approximated: 

𝐥 = [𝑄𝑥,1 ⋯ 𝑄𝑥,𝑠×𝑡 𝑄𝑦,1 ⋯ 𝑄𝑦,𝑠×𝑡 𝑄𝑧,1 ⋯ 𝑄𝑧,𝑠×𝑡]𝑇. Eq. 8 

The control points are estimated in a least square sense by minimizing the errors 𝛆: 

�̂� = [𝑥0,0 ⋯ 𝑥𝑛,𝑙 𝑦0,0 ⋯ 𝑦𝑛,𝑙 𝑧0,0 ⋯ 𝑧𝑛,𝑙]𝑇 = (𝐀𝑇𝐏𝐀)−1𝐀𝑇𝐏𝐥. Eq. 9 

𝐏 represents the weight matrix of the coordinate components of the point cloud. In the case of 

identical and independent normally distributed errors 𝛆, 𝐏 is given by the identity matrix 𝐈. 
 

2.2 Model Selection  

 

The Kullback-Leibler Information is a fundamental measure of distance of a fully specified 

probability density function (pdf) to another one (cf. Burnham & Anderson, 2002; Section 2.1). 

Since the pdf of certain observables usually involves unknown parameters to be estimated from 

the data in the course of an adjustment, several attempts have been made to use the Kullback-

Leibler Information to derive a statistic (i.e., data-dependent quantity) that allow one either to 

measure the distance of the adjusted model to the true model or to test competing models against 

each other. In the remainder of this section, we summarize two well-known information criteria 

as well as two hypothesis tests (which apparently have not been applied to geodetic model 

selection problems, yet). The choice of these procedures is motivated by the fact that the 

competing models of our subsequent case study in Section 3 are non-nested in the sense that 

none of the (B-Spline) models is a special case of the other one. More specifically, under the 

usual assumption of normally distributed and homoskedastic observations (having common 

variance 𝜎𝟐), the GMM in (6) translates into the logarithmized pdf or log-likelihood function 
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𝐿(𝐱, 𝜎𝟐; 𝐥) = log ∏
1

√2𝜋𝜎𝟐

3∙𝑠∙𝑡
𝑖=𝟏  exp {−

𝟏

𝟐
(

𝐀𝑖𝐱−𝒍𝑖

𝜎
)

𝟐

} = ∑ 𝐿(𝐱, 𝜎𝟐; 𝑙𝑖)
3∙𝑠∙𝑡
𝑖=1   Eq. 10 

where the 3 ∙ 𝑠 ∙ 𝑡 rows 𝐀𝑖 of the total design matrix 𝐀 (corresponding to the 3 ∙ 𝑠 ∙ 𝑡 given 

measurements 𝑙𝑖 in the total observation vector 𝐥) depend on the specific parameterization of 

the B-spline model. Strictly speaking, the components of a B-Spline design matrix depend on 

the given measurements and constitute therefore random variables. However, to obtain a 

tractable testing problem, we condition the log-likelihood function on the given measurements 

and assume accordingly the components of the design matrix to be constants.  

As a first step towards model selection testing, we apply the definitions of Akaike's Information 

Criterion  

AIC = −2 ∙ 𝐿(�̂�, σ̂𝟐; 𝐥) + 2 ∙ (3 ∙ [𝑛 + 1] ∙ [𝑙 + 1] + 1)   Eq. 11 

and of the Bayesian (sometimes also called Schwarz's) Information Criterion  

BIC = −2 ∙ 𝐿(�̂�, σ̂𝟐; 𝐥) + (3 ∙ [𝑛 + 1] ∙ [𝑙 + 1] + 1) ∙ log(3 ∙ 𝑠 ∙ 𝑡)    Eq. 12 

where the total number 3 ∙ [𝑛 + 1] ∙ [𝑙 + 1] + 1 of estimated parameters is determined by the 

number [𝑛 + 1] ∙ [𝑙 + 1] of control points, as well as by the single estimated variance. Notice 

that the least-squares estimate �̂� in (9) coincides with the maximum-likelihood (ML) estimates, 

whereas the least-squares estimate for the variance closely approximates the ML estimate σ̂2 

when the redundancy is large (cf. Koch, 1999). When these information criteria are evaluated 

for different models/design matrices, the model with the smallest value gets selected. Since we 

will be interested in rigorously judging whether the selected model is significantly better than 

the other candidate models, we review now two extensions of AIC and BIC to statistical 

hypothesis tests.   

 

2.2.1 Voung's Testing Approach 

 

Instead of comparing the values that an information criterion takes at different models, Vuong's 

test compares two competing (adjusted) models via a test statistic, which exceeds critical values 

in cases of significant model differences. Under the null hypothesis, the two compared models 

are equivalent, i.e., there is no significant difference between them. Letting 𝐀(0)𝐱(0) and 

𝐀(1)𝐱(1) represent two competing B-Spline models involving, for instance, different basis 

function degrees or different numbers of control points, the idea is to check whether the ML 

estimates �̂�(0), �̂�(0) and �̂�(1), �̂�(1) cause a very small or large difference 𝐿(�̂�(0), �̂�2(0); 𝐥) −
𝐿(�̂�(1), �̂�2(1); 𝐥) between the associated log-likelihoods. To do this, Vuong normalized this 

difference with �̂� times the square root of the total number of observations (cf. Clarke, 2007; 

Section 2.1), which reads in our B-Spline selection problem  

�̂� ∙ √3 ∙ 𝑠 ∙ t = √𝐸 − 𝐹 ∙ √3 ∙ 𝑠 ∙ t   Eq. 13 

with 

E =
1

3∙𝑠∙t
∑ [𝐿(�̂�(0), �̂�2(0); 𝑙𝑖) − 𝐿(�̂�(1), �̂�2(1); 𝑙𝑖)]

23∙𝑠∙t
𝑖=1    Eq. 14 

and 

F = [
1

3∙𝑠∙t
∑ [𝐿(�̂�(0), �̂�2(0); 𝑙𝑖) − 𝐿(�̂�(1), �̂�2(1); 𝑙𝑖)]3∙𝑠∙t

𝑖=1 ]
2

.   Eq. 15 

Since the test statistic 
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𝐿(�̂�(0), �̂�2(0); 𝐥) − 𝐿(�̂�(1), �̂�2(1); 𝐥)

�̂� ∙ √3 ∙ 𝑠 ∙ t
 Eq. 16 

follows then approximately (i.e., for large numbers of measurements) the standard normal 

distribution, the two considered models are significantly different if the statistic takes a value 

that is less than the 𝛼/2-quantile or greater than the 1 − 𝛼/2-quantile of N(0,1), where 𝛼 

describes the significance level. The former case indicates that the B-Spline model 𝐀(0)𝐱(0) is 

significantly better than the model 𝐀(1)𝐱(1), the latter case suggests reversely that the model 

𝐀(1)𝐱(1) is significantly closer to the truth than model 𝐀(0)𝐱(0), and a value between the lower 

and upper critical value means that the two models are equivalent or practically 

indistinguishable. It is generally recommended to punish models with great numbers of 

functional parameters, so that we follow the recommendation of Vuong (1989) and include 

similar correction terms as in the information criteria. In our case study, we use the BIC-related 

term to correct the log-likelihoods in the numerator of (16), respectively, to  

𝐿(�̂�(0), �̂�2(0); 𝐥) −
1

2
∙ (3 ∙ [𝑛(𝟎) + 1] ∙ [𝑙(𝟎) + 1] + 1) ∙ log(3 ∙ 𝑠 ∙ t)   Eq. 17 

and  

𝐿(�̂�(1), �̂�2(1); 𝐥) −
1

2
∙ (3 ∙ [𝑛(1) + 1] ∙ [𝑙(1) + 1] + 1) ∙ log(3 ∙ 𝑠 ∙ t).   Eq. 18 

These modifications leave the test distribution asymptotically unchanged.  

 

2.2.2 Clarke's Testing Approach 

 

When comparing different B-Spline models, we essentially vary the design matrix within the 

observation equations while the remaining structure (i.e., the stochastic model) remains 

unchanged. As mentioned earlier, different B-Spline designs usually give rise to design matrices 

that are non-nested. Clarke (2007) noted that in such a situation, the probability distribution of 

the likelihood ratio statistic (or equivalently of the log-likelihood difference) is often found to 

be highly peaked in comparison to a Gaussian distribution. To account for this finding, Clarke 

(2003) proposed a distribution-free test, for which the distribution of the test statistic does not 

depend on the normality of the likelihood ratio. Instead of testing the difference between the 

likelihoods given the entire data set 𝐥 as in (16), the idea now is to compute the differences  

𝑑𝑖 = 𝐿(�̂�(0), �̂�2(0); 𝑙𝑖) − 𝐿(�̂�(1), �̂�2(1); 𝑙𝑖)   Eq. 19 

between the log-likelihoods at each observation 𝑙𝑖 individually and to count the total number 𝐵 

of positive differences. In case the competing models are similar, that number is expected to be 

small. The sum 𝐵 follows a Binomial distribution (whose parameters are naturally given firstly 

by the number of observations or compared log-likelihood values 3 ∙ 𝑠 ∙ t and secondly by the 

a-priori probability 0.5 of obtaining a positive log-likelihood difference). Thus, the two 

competing models are significantly different if the statistic 𝐵 turns out to be less than the 𝛼/2-

quantile or greater than the 1 − 𝛼/2-quantile of that Binomial distribution. In analogy to 

Vuong's test, we follow the proposal of Clarke (2007) and punish overly large models by 

correcting the compared log-likelihoods in (18), respectively, to 

𝐿(�̂�(0), �̂�2(0); 𝑙𝑖) −
1

2∙3∙𝑠∙t
∙ (3 ∙ [𝑛(𝟎) + 1] ∙ [𝑙(𝟎) + 1] + 1) ∙ log(3 ∙ 𝑠 ∙ t)   Eq. 20 

and  
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𝐿(�̂�(1), �̂�2(1); 𝑙𝑖) −
1

2∙3∙𝑠∙t
∙ (3 ∙ [𝑛(1) + 1] ∙ [𝑙(1) + 1] + 1) ∙ log(3 ∙ 𝑠 ∙ t).   Eq. 21 

As for Vuong's test, the distribution of the test statistic can be maintained under these 

dimensionality correction.  

 

3. CASE STUDY 

 

3.1 Experiment Design and Data Acquisition 

 

The object under investigation in this case study is an historic masonry arch bridge over the 

river Aller near Verden (Lower Saxony, Germany). The aim of the experiment was the 

combination of numerical models and experimental investigations for model calibration 

(Schacht et al., 2016). The project team under the leadership of the Institute of Concrete 

Construction of the Leibniz Universität Hannover has carried out two load test with a maximum 

load of 570 t (!) in March and June 2016. The contributions from researchers of the Geodetic 

community were the detection of load-induced arch displacements by means of, e.g., laser 

tracker and laser scanner, which is discussed, e.g. in Paffenholz et al. (2018a), Paffenholz et al. 

(2018b) and Wujanz et al. (2018). 

The historic masonry arch bridge was made of circular brick arches of following dimensions: 

width 14m, depth 8m and height 4-6m. Figure 1 shows the side view from West of the arch 4 

under investigation. 

In the scope of the load testing the standard load of 1.0 MN (100 t) should be clearly excited. 

By this setup first nonlinear deformations should be detected. According to Schacht et al. (2016) 

and the references therein, performed numerical simulations stated that a loading with five-

times the standard load has to be realized. Thus, a maximum load of approximately 6.0 MN 

was defined which will be produced by four hydraulic cylinders. These hydraulic cylinders 

were mounted on the arch (see Figure 1). The counteracting force was realized by injection 

piles of length 18 m in depth. The connection of hydraulic cylinders and injection piles is 

realized by threaded rods. A detailed description of the bridge structure as well as the design of 

experiments can be found in Schacht et al. (2016) and Schacht et al. (2018). 
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Figure 1: Side view from West of the arch 4 of the historic masonry arch bridge. The whitewashed area indicates 

the area of the direct influence of the load application. In the foreground: Baseline for the estimation of the vertical 

deflection at three discrete locations. On the bridge: four hydraulic cylinders for the load application. 

 

The Geodetic Institute Hanover has used the terrestrial laser scanner Zoller+Fröhlich (Z+F) 

Imager 5006 to capture 3D point clouds of the entire underside of the arch. The data acquisition 

was carried out in periods of a constant load on the bridge. Details of the loading regime can be 

found in Paffenholz et al. (2018a). The setup of the laser scanner was carefully chosen outside 

the danger zone in case of a structural collapse and under consideration of an almost optimal 

object distance and angle of impact of the laser beam on the surface of the arch. Since in this 

contribution, the focus is on the approximation of 3D point clouds by means of B-Splines, we 

have chosen the reference epoch of load 100 kN to statistical investigate our different 

approximation approaches. For an in-depth discussion of the experiment and results for vertical 

displacements is referred to Paffenholz et al. (2018a) and Wujanz et al. (2018). 

 

3.2 Preparation of Data Sets  

 

For the approximation of the 3D point clouds by means of B-Spline surface some preparatory 

steps have to be performed. Firstly, interfering objects which most likely appear differently in 

various load steps should be carefully removed from the 3D point clouds. These interfering 

objects are for instance other sensor installations like prisms for the laser tracker and strain 

gauges. Previous investigations have shown, that aforementioned objects appear differently in 

the load steps and thus could lead to misinterpretations in the subtraction of a load step with 

respect to a reference epoch. Secondly, a buffering is performed to reduce the 3D point cloud 

in the margin areas with the aim to handle data gaps in the margin areas and improve the B-

Spline approximation. Thirdly and lastly, an initial approximation by means of a projection of 

the 3D point cloud on a regular grid is performed. These simple gridding approach is justified 

due to a homogenous curvature of the arch which is characterized by non-occuring curvature 

changes. Sophisticated approaches to deal with complex surfaces, like Coons Patches, are 

discussed by Harmening & Neuner (2015). The grid size is chosen with respect to the 

dimensions of the 3D point cloud of the arch. Chosen is a size of 9 m, i.e. 400 grid cells, 

perpendicular to the bridge centerline and 14 m, i.e. 600 grid cells, in direction of the bridge 

centerline. This gridding results in nearly quadratic grid cells of size 2.2 cm and each cell holds 

10 3D points of the 3D point cloud. 

 

4. RESULTS OF THE INVESTIGATION 

 

In order to select the proper B-Spline model as a representation of the optimal modeled surface, 

the number of control points (resulting into the total number of parameters) as well as the 

optimal knot vector should be determined. For this reason we evaluate B-Spline surface models 

described in Section 2.1 with increasing the control points in �̅�- and �̅�-direction from 5 to 41. 

We obtained in total 1369 combinations.  
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4.1 AIC and BIC information criteria 

4.2  

First the well-known penalization information criteria (AIC and BIC) are calculated (see. Eq. 

11 and 12). The resulting numbers are sorted according to the amount of model parameter from 

the smallest to the largest number of parameters. The result is shown in Figure 2 for different 

knot vector determination techniques. We see clearly that our knot vector determination 

approach MCM (Bureick et al., 2016) leads in all models to smaller AIC and BIC than the 

standard approach KPT introduced in Piegl & Tiller (1997). We use AIC and BIC in order to 

discriminate between B-Spline surface models. The minimum values for both criteria numbers 

and both knot vector determination are summarized in Table 1.  

 
Table 1: Minimum number of AIC and BIC. 

 KPT MCM 

 n l n l 

AIC 39 27 37 27 

BIC 12 9 15 8 

 

  
Figure 2: Results for AIC (left) and BIC (right) for two different knot vector determination approaches: 

Evolutionary Monte Carlo Method (MCM) developed by Bureick et al. (2016) and knot placement technique 

(KPT) described in Piegl & Tiller (1997). 

 

4.3 Evaluation of competing B-Spline models with Voung and Clarke testing approaches 

 

In order to select the best B-Spline surface model from the 1369 possible combinations for 

every knot vector determination approach, we use the model selection approaches based on 

Voung’s and Clarke’s test described in Section 2.2.1 and 2.2.2 respectively. The best model 

should fulfill the balance between model complexity and proper approximation quality. For this 

reason every model from the 1369 possible combinations should be tested against the other 

1368 combinations, which results in about 2 million implementations of the both test 

approaches for every knot vector determination method, which lead to enormous time and 

computing capacity. Thus we developed a test strategy which needs much less combinations. 

First we search for every model 𝑀(𝑛, 𝑙) all neighbouring models 𝑀𝑛𝑒𝑖(𝑛𝑛𝑒𝑖 , 𝑙𝑛𝑒𝑖) which fulfil 

the following conditions: 𝑛 − 𝑐 ≤ 𝑛𝑛𝑒𝑖 ≤ 𝑛 + 𝑐 and 𝑙 − 𝑐 ≤ 𝑙𝑛𝑒𝑖 ≤ 𝑙 + 𝑐. The constant 𝑐 gives 

the maximum neighbouring step for competing models. Afterwards the model 𝑀(𝑛, 𝑙)  (model 
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I) will be tested against all other competing models (model II) lying in the neighbouring area. 

All competing models, which fulfil following conditions: 𝑛 − 𝑐 < 𝑛𝑚𝑖𝑛, 𝑛 + 𝑐 > 𝑛𝑚𝑎𝑥, 𝑙 −
𝑐 < 𝑙𝑚𝑖𝑛 and 𝑙 + 𝑐 > 𝑙𝑚𝑎𝑥 , will be compared in a further step with model I. In this paper we 

fixed the constant 𝑐 to 5 resulting in 120 test implementations at maximum. The models, which 

are located at the edge, have 35 test implantation at minimum. For every model a scoring is 

allocated. The scoring of model 𝑀(𝑛, 𝑙)  is increased by the value 1 if this model is tested to be 

preferred over model II. Otherwise the scoring will be decreased with the value -1. If it is not 

possible to discriminate between model I and II the scoring will not be changed. After the 

performing of all possible tests the scoring for the model 𝑀(𝑛, 𝑙)  is divided by the total number 

of test implementations. Thus a range of values between -1 and 1 is obtained for every model. 

The value 1 means that model I is better than all neighboring models, and - 1 means, in contrast, 

that model I is more unreliable than all other neighboring models. Afterwards we select the 

model with the highest scoring and test it with all other models. If the test result is positive (the 

model 1 is preferred over all models), then we select this model to be the best model among 

possible combinations. If this is not the case we select the model, which is better and have then 

to repeat the same procedure and test this model against all other alternative B-Spline models 

until we identify a model which is preferred over all other models (1368 possible models). In 

total the computing effort has been reduced from 2 million to about 150.000 test 

implementations. 

 

The results for Voung’s test approach are depicted in Figure 3. According to Figure 3 the highest 

obtained scoring in case of applying Voung’s test approach has been reached for 𝑀(15,8) 

(rectangle with red edges) using MCM knot determination technique and  𝑀(18,9) using KPT 

technique, respectively. Afterwards we tested the selected model with maximum scoring using 

Voung’s approach against other models. This model was preferred over all other models expect 

the models depicted in rectangle with magenta edges. 

 

  
Figure 3: Results for Voung’s test for two different knot vector determination: MCM and KPT techniques 

 

According to Figure 4 the highest obtained scoring in case of applying Clarke’s test approach 

has been reached for 𝑀(15,8) (rectangle with red edges) using MCM knot determination 
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technique and  𝑀(12,9) using KPT technique, respectively. Afterwards we tested the selected 

model with maximum scoring using Clarke’s approach against other models. This model was 

preferred over all other models without exception.   

 

  
 

Figure 4: Results for Clarke’s test for two different knot vector determination: MCM and KPT techniques 

 

We conclude that Voung’s testing approach was not able to identify a unique best model for 

both knot vector determination techniques. In contrast, the Clarke’s testing approach can 

identify one model to be preferred over all other B-Spline models using two different knot 

vector determination approaches. If we test both best models from the different knot vector 

determination techniques using the Clarke’s testing approach, the model 𝑀(15,8) resulting 

from MCM technique is preferred over the model 𝑀(12,9) resulting from  KPT technique with 

a significance level 𝛼 of 5%. The absolute deviations of the adjusted observations between both 

models are displayed in Figure 5. 
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Figure 5: Absolute deviations of the adjusted observations between MCM and KPT 

 

As we can see the absolute deviations between both models are 8 mm at maximum. The largest 

deviations are centered in the arch crown (𝑦 ≈ 7 𝑚). 

 

5. CONCLUSION  

 

We show in this paper the Vuong and Clarke tests, which are likelihood-ratio-based tests for 

model selection that use the Kullback-Leibler information criterion. The implemented tests can 

be used for choosing between two competing bivariate B-Spline models which are non-nested. 

In both tests, the null hypothesis is that the two B-Spline models are equivalent, whereas the 

alternative is that one of both models is better than the other. The Voung test follows 

asymptotically a standard normal distribution under the null hypothesis whereas the Clarke test 

follows asymptotically a binomial distribution with two parameters: number of observations 

and 0.5. For our test study, the Voung test does not perform well and was not able to identify 

the best B-Spline model. The Clarke’s test approach, in contrast, can successfully prefer one 

model over all other competing models. An identical result is obtained by comparing Clarke’s 

test decision with the widely-used BIC information criterion in discriminating B-Spline surface 

models. The main difference between Kullback-Leibler information criterion and parametric 

Voung’s and non-parameteric Clarke test is that hypothesis tests make assessment in a 

framework of likelihood ratio hypothesis testing, which can select the significant probabilistic 

differences between competing models. 
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