Noise Reduction Algorithm for Mobile LiDAR Data of Sand Ripples in Intertidal Zones of Beaches

Alain DE WULF, Michiel DECOCK, Annelies VANDENBULCKE, Cornelis STAL and Philippe DE MAEYER

Ghent University, Department of Geography,
3D data acquisition group, Belgium
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Archaeological heritage in the North Sea

http://www.sea-arch.be
The CREST project aims to increase the knowledge of coastal processes near the coast and on land. This project with primarily a social finality is part of the Strategic Basic Research (SBO) programme of the Flanders Innovation & Entrepreneurship and runs from 1 November 2015 to 31 October 2019. There are ten partner institutions involved coming from the academic world, the Flemish government and the private sector.
- Homogeneous coast line
- 300 m between breakwaters
- Very fine sand (0.2 mm)
- 1.5 % slope
Geographic location of Belgium in Europe with detail map focused on the survey region of Raversijde.
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Comparison of several beach data-acquisition techniques

- Aerial LIDAR

- Conventional techniques used for data validation and quality assessment
 - *Global Navigation Satellite System (GNSS) measurements*
 - *Robotic Total Station*
 - *Static Terrestrial Laser Scanning (STLS)*

- Structure from Motion and Multi View Stereo (SfM & MVS) – Kite

- Singlebeam or multibeam echosounding

- Mobile Terrestrial Laser Scanning
Selected technique:

MTLS (LIDAR), several test in cooperation with Prof. Nicolas SEUBE (formerly ENSTA, Brest, France, now CIDCO, Rimouski, CANADA)
Special Service Vehicle (SSV) Kymco UXV 450

Leica HDS 6100 (similar to Z&F 5006)
• Mobile Terrestrial Laser scanning using MTLS
 – Real-time acquisition and processing in QPS Qinsy software
• MTLS (Lidar):
 – Processing = mainly noise filtering
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Classical noise removal based on a grid system:

Removal condition is based on statistical outliers in the height/depth or more complex conditions.
Own PC software development for grid filtering based on H/D and Backscatter

- High precision digital terrain model, up to 8 billion grid cells (or TIN with 50 million points) with 32 Gb RAM.

- Allows:
 - Sub-cm grid intervals (e.g. 300 m by 160 m grid of 2,5 mm cells => ca. 8 billion cells)
 - Visualisation
 - Filtering (outlier removal)
 - Correlation computation
Height/Depth variation Analysis

- Maximal Slope (%)
- Maximal slope direction
- Slope in specified direction
- Slope curvature (second derivative model)
Backscatter Intensity Analysis

- Intensity of the backscatter signal
- Slope direction of maximum intensity
- Slope in specified direction
- Slope curvature (second derivative model)
Outlier elimination

- Local Relief (absolute difference value)
- Standard Deviation (n*SD)
- Boxplot (1.5 * (Q3 - Q1))

Can be applied to:

Geometric model
- Depths
- Slopes
- Curvature

Backscatter model
- Intensity
- Slopes
- Curvature
Correlation Analysis between geometry and backscatter

- Without adequate noise elimination and intensity correction => weak correlation
- Geometric model can be improved by optimal noise filtering
- Backscatter model can be improved by corrections for distance, angle (and humidity ?)
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Backscatter adjustment

\[I = C \rho \eta_{sys} \frac{\cos \alpha}{r^2} + \varepsilon \]

(Pfeifer et al., 2007)

- \(I \) = intensity
- \(C \) = constant factor
- \(\rho \) = surface properties
- \(\eta_{sys} \) = (non-constant) system transmission factor
- \(\alpha \) = incidence angle
- \(r \) = measured distance
Comparison of the absolute backscatter variability between the exponential and logarithmic models
Intensity map for a track line after intensity adjustment
Overview of the filtering algorithm’s modules
Rotation of strip to eliminate the inclination α of the beach.
• Results:
 – Boxplot-based outlier removal
 – Feature enhancement
Example of a filtered cross-section of the beach
Outline

1. Data acquisition research group projects
2. Mobile LIDAR beach vehicle
3. Classical grid filtering
4. Advanced noise reduction algorithm
5. Conclusion
Conclusion

• Highly accurate intertidal zone modelling of sand beaches requires a specific acquisition technique.

• A SSV equipped with MTLS and a high grade INS and GNSS proved to be the most adequate platform for geomorphological modelling of sand beaches.

• At least equally important is an adequate processing and noise removing filter technique.

• An advanced filtering technique combining the geometry with corrected backscatter values was proposed and proved to yield better results than a classical grid noise filtering technique.
Thank you for your attention

Contact & Information:

Alain.DeWulf@UGent.be
Michiel.Decock@UGent.be
Annelies.Vandenbulcke@UGent.be
Cornelis.Stal@UGent.be
Philippe.DeMaeyer@ugent.be

Ghent University, Department of Geography
Questions, Cooperation, Ideas?