Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland

Helsinki Finland
29 May - 2 June 2017

Surveying the world of tomorrow - From digitalisation to augmented reality

Organised by

Platinum Sponsors:

esri
Trimble
Review of the 3D Modelling Algorithms and Crowdsourcing Techniques - An Assessment of their Potential for 3D Cadastre

Maria Gkeli, Surveying Engineer, PhD Candidate NTUA
Charalabos Ioannidis, Professor of Photogrammetry NTUA
Chryssy Potsiou, Associate Professor NTUA, FIG President
Introduction

- Current research trends:
 - Integration of the 3rd D / 4D Cadastre,
 - Adoption of automation
 - Low-cost but reliable procedures
 - Use of VGI procedures
 - Usage of modern IT tools and m-services for cadastral data acquisition

- VGI geo-data-future
- Internet-based automated photogrammetric solutions, for the 3D world

Crowd and each one of internet-users may be defined as a potential neo-photogrammetrists (Leberl, 2010).
I. Acquisition of 3D Information
 → huge potential in fulfilling the requirements of CityGML LOD1

II. Acquisition of complete 3D Models
 ✓ user generated 3D models
 ✓ user must have a certain level of 3D modelling skills
3D Real World VGI Applications (2/2)

III. Creation of 3D Models

- 3DVIA (Virtual Earth) and Building Maker (Google Earth) (2007)
 - Oblique images
 - Birds-eye images
 - User without 3D modelling skills
- Free-to-use 3D object repositories (Archive3D7, Shapeways8 etc.)
- OSM-3D, OSM Buildings, Glosm, OSM2World, KOSMOS Worldflier etc.

2D vectors + crowdsourced images \rightarrow 3D Building Reconstruction
Data Capturing

- **Tools** → laser meters, terrestrial and/or aerial imagery, GPS or even terrestrial laser scanning

 - ✔ Included in modern smartphones **multi-sensor-system**
 - ✔ **In the Future...** barometers, stereo cameras such as Kinect

- images from sharing sites and social networks such as Flickr, Instagram, Panoramio, Picasa, Pinterest

- **3D Modelling Software** :

 - ✔ **Commercial** (Agisoft)
 - ✔ **Free-to-use** → low-cost alternative (Autodesk, 123D Catch or My3DScanner)
3D Reconstruction Methods

Input Data:
- Aerial and terrestrial imagery
- Lidar Data (point cloud / DSM)

A-priori known building shape?

Data-driven Approaches (Non-Parametric Methods)

Model-driven Approaches (Parametric Methods)

Hybrid Methods

Very Dense Point Cloud
Data-driven Approaches (Non-Parametric Methods)

- **Plan Fitting Methods**
 - Ransac algorithms
 - Least Square Planar Fitting

- **Filtering & Thresholding Methods**
 - Canny Edge Detector
 - Steger Edge Detector
 - Line Segment Detector

- **Supervised Classification Methods**
 - Region Growing-based algorithms
 - 3D Hough transform
 - Ransac algorithms
 - Scan Line Segmentation
 - etc.

- **Segmentation-based Methods**

FIG WORKING WEEK 2017

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality
Model-driven Approaches (Parametric Methods)

- Lsystems
- Shape Grammars
- Formal Grammars
- Split Grammars
 - Attributed Building Grammars
 - Computer Generated Architecture (CGA) Grammar
 - etc.
VGI AS A DATA SOURCE FOR 3D RECONSTRUCTION

- VGI approach to photogrammetry poses additional challenges
- Modern software → deal with difficulties: ✓ unknown and varying focal length, ✓ lighting changes, and ✓ incompatible images

BUT common problems remain

- Main issues: ▪ incomplete models
 ▪ repetitive structures and symmetries → gross errors
 ▪ models are not geo-referenced with appropriate accuracy

- Solution: ✓ small data clusters
 ✓ reconstruction of each cluster
 ✓ digital cameras, consumer-grade single-frequency GNSS → Coarse Absolute Orientation
Model-driven Methods:
- robust
- high computing speed
- cost effective
- topologically correct model output
- less sensitive to noise
- no need for specific 3D modelling skills
- prior information about building shape
- Limited model library

Data-driven Methods:
- no need any prior knowledge about building structure
- flexible
- textured models
- very dense point cloud
- high computational cost
- sensitive to noise
- require specific 3D modelling skills
- Topological errors

VGI data – Main Error

Occlusions

3D Cadastre - Key Element

Volumes of buildings – preserve property rights

Best fitted solution - Model-Driven Methods
Proposed Framework – Preliminary 3D Cadastre (1/2)

- Provision of the orthophoto with the areas under cadastral survey
- Demarcation of property boundaries by the right holders at real time on the basemap

Existence of ground plans?
- YES → Selection of property’s footprint
- NO → Digitizing a polygon - Mobile application

Help needed?
- Provided either by volunteers or by professionals
- Demonstration videos of the mobile/web applications by NCMA

- Declaration of rights- Submission of supporting documents - Web application
- Compilation of preliminary 2D crowdsourced cadastral maps, by right holders
Proposed Framework – Preliminary 3D Cadastre (2/2)

- **3D BUILDING MODELS – 3D CADASTRE**
 - Insertion and storage of 3D models into a cadastral platform – **Web application**
 - Creation of 3D building model → Model-Driven Approach (Parametric modelling) – **Mobile application**
 - Insertion of **additional information**: building height, ridge type, images.
 - **3D Parametric reconstruction** of the building
 - **Texture needed?** if YES → Texture mapping using collected images

- **Compilation of preliminary crowdsourced 3D building models by right holders**

Help needed?
- Provided either by volunteers or by professionals
- Demonstration videos of the mobile/web applications by NCMA
In-house developed application on Android (1/3)

- **Self-developed open-sourced** Mobile Application
 - 3D cadastral data acquisition
 - 3D visualization of real properties (LoD1)

- **Software tools:**
 - Visual Studio 2013 – IDE
 - ArcGIS Runtime SDK for .NET (100.0.0)
 - Xamarin.Android
 - JDK 8, Oracle
 - ArcGIS Online Server
 - Programming Language C#

- **Test Device:**
 - (i) API level 19,
 - (ii) Screen dimensions 5.25in
In-house developed application on Android (2/3)

Floor: 4
Height: 3m

Parametric Modelling - 3D property Models
In-house developed application on Android (3/3)

- Determination of (1) property
 - Floor: 0
 - Height: 3m

- Determination of (1) property
 - Floor: 1
 - Height: 3m

- Determination of (3) properties
 - (i) Floor: 0
 - Height: 3m
 - (ii) Floor: 2
 - Height: 3m
 - (iii) Floor: 4
 - Height: 3m
CONCLUSIONS

A cost effective solution is required for the initial implementation of a FFP 3D Cadastre

- Advantages:
 - Transparency
 - Citizens’ participation - decisive role of property owners
 - Management of complex areas – multiple levels of rights
 - Cost effective and less time consuming solution
 - Guaranteed protection of properties
 - Reliability
 - Simplification of the procedures – no need for specific 3D modelling skills
 - Improvement of spatial planning and infrastructure development
Thank you for your attention!