Digital Data Sources for Spatial Accessibility Analysis

Anne Dahlhaus, Ulrike Klein and Hartmut Müller, Germany

FIG Working Week 2017
Surveying the world of tomorrow – From digitalisation to augmented reality
Helsinki, Finland, May 29 - June 2 2017
TS02E: Crowdsourcing and VGI
Time: 5/30/2017 4:00:00 PM
Topics of Presentation

1. Ageing in Europe and Germany
2. Digital Data Sources for Accessibility Analysis
3. Access to Health Care for Senior Citizens in a Rural Area
4. Access to Health Care for Senior Citizens in an Urban Area
5. Conclusions
Aging Population in Germany 2010 to 2030

Difference Youth: -2.4 Mio.
Difference Middle-Aged: -5.5 Mio.
Difference Elderly: +1.6 Mio.
Age 20 to 64 together: 6 Mio. less people

Source: BMI 2011
How does it look like?

http://www.handelsblatt.com
Relevant Infrastructure for Senior Citizens

<table>
<thead>
<tr>
<th>General Supply</th>
<th>Health</th>
<th>Leisure and Culture</th>
<th>Public Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermarket</td>
<td>Hospital</td>
<td>Park, Public Green</td>
<td>Town Hall</td>
</tr>
<tr>
<td>Bakery</td>
<td>Doctor</td>
<td>Restaurant, Bars</td>
<td>Church</td>
</tr>
<tr>
<td>Market</td>
<td>Pharmacy</td>
<td>Museum, Theater</td>
<td>Library</td>
</tr>
<tr>
<td>Hairdresser</td>
<td>Care Facility</td>
<td>Community Center</td>
<td>Adult Education Center</td>
</tr>
<tr>
<td>Bank</td>
<td></td>
<td></td>
<td>Sport Center, Bath</td>
</tr>
<tr>
<td>Post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Population and Medical Consultation in the Study Area

Current (2015) vs. Projection (2040)

Source: Hammerschmidt, Katzer, Klauß, Vollmer 2015
Easy Access for Senior Citizens to relevant Infrastructure
Analysis of Accessibility in this Study

- Rural Area:
 Access: Transportation by car
 Limiting Constraints: Distance and resulting travel time

- Urban Area:
 Access: Walking
 Limiting Constraints: reduced walking mobility as well as barriers on ‘walking ways’
Urban study area
City of Bochum

Rural study area
Eifel region

<50 P/KM2

http://www.openstreetmap.de/karte.html

6500 P/KM2
Topics of Presentation

1. Ageing in Europe and Germany
2. Digital Data Sources for Accessibility Analysis
3. Access to Health Care for Senior Citizens in a Rural Area
4. Access to Health Care for Senior Citizens in an Urban Area
5. Conclusions
Digital Data Sources

Location of Medical Practices
• Data Sources: Health Insurance Association, Phonebook, Websites

Road Network
• Data Source: OpenStreetMap, value „maxspeed“

Footpath Network
• DataSource: Digitized on aerial photos (WMS from local government)

Barriers on Footpath
• Data Source: Collection with Mobile Mapping App
Examples for Barriers

• Signs in wrong height
• Physical barriers, like trash bins
• Stairs
• Narrow footpaths
• Uneven ground, like sand, gravel
• Roots of large trees
How to Measure Spatial Accessibility? (I)

Step 1: Calculation of catchment areas for all medical practices

Definition of three corridors $c(5)$, $c(10)$, $c(15)$, with travel time t

$t(5) = 5$ minutes
$t(10) = 10$ minutes
$t(15) = 15$ minutes
How to Measure Spatial Accessibility? (II)

Step 2: Intersection of road segments and corridors

c(5), c(10), c(15) corridors \rightarrow spatial intersection for all medical practices m \rightarrow 3 x m attributes for all road segments (rural area) and footpath segments (urban), respectively. Attribute value indicates if a segment takes part in a c(5), c(10), c(15) corridor of a medical practice m.
How to Measure Spatial Accessibility? (III)

Step 3: Including attractivity of primary care practices.

Linear decrease of attractivity with increasing distance from the physician’s practice → attaching different weights p to the catchment corridors $c(5)$, $c(10)$, $c(15)$

$p(5) = 3$
$p(10) = 2$
$p(15) = 1$
How to Measure Spatial Accessibility? (IV)

Step 4: Quantification of local accessibility to primary health care by score values

Summing up the weights $p(i)$ of all catchment areas, in which a certain road segment (rural) or footpath segment (urban) takes part in \rightarrow score value $S(k)$ of the road segment (rural) or footpath segment (urban) k.

Example If a segment takes part in 2 $c(5)$ corridors, in 3 $c(10)$ corridors and in 4 $c(15)$ corridors, for instance, then its score value amounts to $S(k) = 2 \times 3 + 3 \times 2 + 4 \times 1 = 16$.
How to Measure Spatial Accessibility? (V)

Step 5 (optional): Integrating barriers in the calculation of catchment areas

If the study area is not too large, collected barriers can be used for the calculation of the catchment areas. These catchment areas can be used for accessibility analysis for mobility reduced people.
Topics of Presentation

1. Ageing in Europe and Germany
2. Digital Data Sources for Accessibility Analysis
3. Access to Health Care for Senior Citizens in a Rural Area
4. Access to Health Care for Senior Citizens in an Urban Area
5. Conclusions
Catchment Area by Travel Time in the Rural Part of the Study Area
Ex.: Score value in the rural town Hillesheim for the street segment marked in red

Persons residing along the street segment marked in red can reach
8 medical practices within 5 min by car,
2 medical practices in between 5 and 10 min,
9 medical practices in between 10 and 15 min,

\[S = 8 \times 3 + 2 \times 2 + 9 \times 1 = 37 \]
Distribution of Score Values across the Rural Part of the Study Area
Example of a Rural Town
50,000 inhabitants
High Accessibility Score
Values

Score values Euskirchen
- 110 - 119
- 120 - 129
- 130 - 139
- 140 - 150
Example of a Rural Village with Low Accessibility Vicinity of Nurburg Ring

Score values of 2 indicate that no medical practice can be reached within 10 min travel time, but only 2 practices within 15 min time.
Topics of Presentation

1. Ageing in Europe and Germany
2. Digital Data Sources for Accessibility Analysis
3. Access to Health Care for Senior Citizens in a Rural Area
4. Access to Health Care for Senior Citizens in an Urban Area
5. Conclusions
Barriers and Accessibility of Footpaths in the Urban Part of the Study Area
Catchment Areas of Primary Health Care for Mobility Reduced Patients within 5 min, 10 min and 15 min Walking Time
Score Values for Footpaths Representing the Accessibility of Primary Health Care in Urban Area 5, 10, 15 min without Barriers
Score Values for Footpaths Representing the Accessibility of Primary Health Care in Urban Area 5, 10, 15 min with Barriers
Remember: Relevant Infrastructure for Senior Citizens

<table>
<thead>
<tr>
<th>General Supply</th>
<th>Health</th>
<th>Leisure and Culture</th>
<th>Public Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermarket</td>
<td>Hospital</td>
<td>Park, Public Green</td>
<td>Town Hall</td>
</tr>
<tr>
<td>Bakery</td>
<td>Doctor</td>
<td>Restaurant, Bars</td>
<td>Church</td>
</tr>
<tr>
<td>Market</td>
<td>Pharmacy</td>
<td>Museum, Theater</td>
<td>Library</td>
</tr>
<tr>
<td>Hairdresser</td>
<td>Care Facility</td>
<td>Community Center</td>
<td>Adult Education Center</td>
</tr>
<tr>
<td>Bank</td>
<td></td>
<td></td>
<td>Sport Center, Bath</td>
</tr>
<tr>
<td>Post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topics of Presentation

1. Ageing in Europe and Germany
2. Digital Data Sources for Accessibility Analysis
3. Access to Health Care for Senior Citizens in a Rural Area
4. Access to Health Care for Senior Citizens in an Urban Area
5. Conclusions
Conclusions

- Identified accessibility problems to primary health care for elderly people in both rural and urban areas
- Primary health care to be reachable and accessible for the broad population → potential accessibility problems to be addressed by health care planning
- Methods in use working on administrative district level thus not reaching a small-area level
- Proposed new method reveals distribution of accessibility to primary care on street segment level both for rural and urban areas
- Spatially accurate identification of areas that need special attention with regard to accessibility of primary health care
- Data collection and quality tests still necessary
Thank you for your attention!

dahlhaus@allgemeinmedizin.uni-frankfurt.de
www.allgemeinmedizin.uni-frankfurt.de/index.html

ulrike.klein@hs-bochum.de
www.hochschule-bochum.de/fbv.html

hartmut.mueller@hs-mainz.de
www.i3mainz.hs-mainz.de