Helsinki Finland 29 May – 2 June 2017

Creation of LoD1 Buildings Using Volunteered Photographs and OpenStreetMap Vector Data

Surveying the world of tomorrow -From digitalisation to augmented reality

Presented at the fight

Platinum Sponsors:

Eliana Bshouty

Sagi Dalyot

Technion

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Outline

- Introduction
- Research Goals
- Methodology
- Field Experiments and Results
- Conclusions and Future Work

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Introduction - 3D City Models

3D city models become increasingly popular among urban planners :

- Noise and environmental analyses
- o Disaster management
- Architecture and city planning
- Level of Detail LOD1

bcgis.com

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Introduction - Volunteered Geographic Information

- VGI: "Thousands of humans acting as remote sensors" (Goodchild, 2007).
- Groups of people can collect geographic data that is either difficult to automate or expensive to implement.

Aerial/satellite imagery digitizing

Surveying the world of tomorrow –

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Introduction – OSM

- OpenStreetMap One of the most famous examples of crowdsourcing VGI maps with more than 3.1 million users.
- More than 6.5 million building 2D footprints, increasing by 1% monthly.
- Yet, only 1.4% of OSM buildings have height data.

		Leve	els		
Levels		2, 4,			S SI
4, б					
		OBJ IIA	15 (0)		
tags (5)		All tag	ding	university	
tags (5) wilding	university	buik heig	ding Jht	university 10m	
tags (5) uilding eight	university 10m	built tag	ding jht	university 10m בנין טאוב למדעי המחשב	
tags (5) wilding eight	university 10m	li leg nam nam	iding jht ie ie:en	university 10m בנין טאוב למדעי המחשב Taub Computer Scie	

OSM 3D - Buildings in Heidelberg, Germany

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Research Goals

- Investigate whether collective imagery contributed by users (WWW) can be used to produce LoD1 information.
- Extract accurate building heights from single perspective images.
- Produce 3D building models (LoD1) in OSM.

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality Input Data– Perspective Building Images

Manhattan-world assumption: the imaged scene contains three orthogonal, dominant directions, typically corresponding to the X, Y, and Z axes.

EXIF - Exchangeable Image File format :

- ➤ Geotagging most cameras and smart phones have a built-in GPS receiver that stores location information [lat ,long] → [X,Y]
- Focal length [pixel]
- Image size [pixel]

esri

Surveying the world of tomorrow - Hels

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Orthogonal Vanishing Points Detection

• Automatically detect the 3 vanishing points based on the Manhattan-world assumption (orthogonality).

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Orthogonal Vanishing Points Detection

Several methods for vanishing point detection make use of the line segments detected in images.

Source: Simon, Fond, Berger. Eurographics 2016

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Camera Internal Parameters

- EXIF :
- Assume principle point is at image center:

 $[u0, v0] = \left[\frac{\operatorname{Im} age \ Width}{2}, \frac{\operatorname{Im} age \ \operatorname{Height}}{2}\right]$

Focal length in pixels :

 $new f = \frac{original f \bullet new width}{original width}$

Vanishing points :

Camera principal point [u0,v0] is at the orthocenter of the triangle, which has the vanishing points as its vertices.

Focal length is estimated using:

Surveying the world of tomorrow – 🛛 🖁 💾

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Building Height Calculation: Single View Metrology

- Single view metrology is used to calculate height in the "real world".
- Cross ratio is preserved by the projective transformation of a projective line.

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Building Height Calculation: Cross Ratio

<u>Horizon line</u> - Projection of the line at infinity of the reference plane into the image [v1,v2].

- Vertical point A point at infinity in the reference direction [v3].
- <u>Reference -</u> height in meter

$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_{Z} - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_{Z} - \mathbf{t}\|} = \frac{H}{R}$$

Platinum Sponsors:

t

b.

 π

π

vanishing point

vanishing line

Surveying the world of tomorrow - Hels

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Building Height Calculation - Example

> Building height is 11.24 m - measured by total station (± 2 cm).

	Reference [m]	Calculated Building Height [m]	Error [m]
Stop sign	2.8	11.4	0.16
Pedestrian _a	1.65	11.6	0.36
Pedestrian _b	1.55	11.1	-0.14

Surveying the world of tomorrow –

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Building footprint - Homography

- > Projective
- $\mathbf{P} = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & 1 \end{array}\right)$

11 & 12 are Horizon line parameters

> Affine

$$\mathbb{A} = \left(\begin{array}{ccc} \frac{1}{\beta} & -\frac{\alpha}{\beta} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right)$$

 $\alpha \& \beta$ are function of the internal parameters

Scaling, Rotation &

Translation

Similarity

$$\mathbf{M} = \begin{pmatrix} \mathbf{s} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & \mathbf{1} \end{pmatrix}$$

 $S = \frac{building \ height \ in \ pixel}{building \ height \ in \ meter}$

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Building footprint: Homography Results

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

Platinum Sponsors:

esri

Strimble.

From digitalisation to avgmented reality

Field Experiments and Results - Height

Measured	Calculated	Difference
11.24	11.4	0.16
11.63	11.56	-0.07
10.95	11	0.05
	Measured 11.24 11.63 10.95	MeasuredCalculated11.2411.411.6311.5610.9511

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Field Experiments and Results - Footprint

 \succ Building footprints were measured using a tape (±5 cm)

	Calculated via focal		Calculated via		Difference				
Measured		length		EXIF focal length		Focal		EXIF	
A [m]	B [m]	A [m]	B [m]	A [m]	B [m]	A [m]	B [m]	A [m]	B [m]
16.00	22.60	16.40	23.00	16.20	23.20	0.40	0.40	0.20	0.60
8.80	12.70	8.22	13.50	8.02	13.43	-0.58	0.80	-0.78	0.73
12.20	17.20	12.36	16.71	12.26	15.03	0.16	-0.49	0.06	-2.17

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Field Experiments and Results - LoD1

b1

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Corresponding building in OSM

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Corresponding building in OSM – Step 1

- Circular buffer with radius = Dp2 + GPS Accuracy (10 m) + Error (5 m)
- The circle center is the GPS coordinates from the EXIF data

□ If there is only one building inside the buffer - Stop search!

Surveying the world of tomorrow - Ho

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Corresponding building in OSM – Step 2

 Compare between the footprints: keep the building with difference bellow 5 [m] for both A & B

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

Platinum Sponsors:

esri

Strimble.

From digitalisation to augmented reality

Corresponding building in OSM – Step 3

- Circular buffer with radius of Dp1 & Dp3
- The circles centers are the 2 corners

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality Corresponding building in OSM – Step 3

X – where the image has been taken in the field
 The difference between X and the nearst intersection point is less than 4 meters

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Conclusions

- Using user-generated contributed single image was found valuable to calculate and extract building height and footprint data.
- Algorithms developed are qualitative in calculating LoD1 building values with less than 1.00 m errors (for most cases) to generate 3D city models (reducing cost and work labor).
- Using accurate reference height is important, although errors are still in the range of desired output.
- Automatically Identifying and updating height data in corresponding building feature in OSM.

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Future Work

- Analyze methodology and algorithms on more WWW building images.
- Update building footprints in OSM.
- Analyze more complex building shapes and footprints.
- Implement a GUI/app for photographers to automatically update OSM with building height data.

Surveying the world of tomorrow -

Helsinki Finland 29 May – 2 June 2017

From digitalisation to augmented reality

Thank you !

Eliana Bshouty Sagi Dalyot

