Unmanned aerial vehicles in municipality level 3D topographic data production in urban areas

Olli NEVALAINEN, Tomi ROSNELL, Teemu HAKALA, Eija HONKAVAARA, Roope NÄSI, Kimmo NURMINEN

Finnish Geospatial Research Institute (FGI)
National Land Survey of Finland (NLS)

Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland
Motivation for the project

• Topographic data from municipalities will have a significant role in the forthcoming National Topographic Database

• Potential of new mobile mapping methods, such as UAVs, for updating 3D topographic data in urban areas needs to be investigated

• Usage of UAVs have increased rapidly:
 – UAV regulations are not clear to all and they have significant impact on the usability
 – More knowledge of the UAV-photogrammetry is needed in order to understand the benefits and limitations of UAV-photogrammetry
 – Guidelines and general knowledge of UAV-based methods is needed!
Project questions:

• Can UAV-photogrammetry:
 – produce accurate- and reliable-enough data for municipality level 3D topographic data?
 – reduce manual labor in the field and provide cost-efficient map updating in urban areas?

Project goals:

• Evaluation of usability of UAV-based mapping in urban areas
• Produce preliminary guidelines for UAV-based 3D topographic data production
Overview of UAV-based 3D topographic data production

1. Planning phase
2. Measurement phase
3. Data processing phase
1 Planning phase

- General planning and measurement method decision
 - Geographical area, required accuracy, accessibility ...

- Legislation and risk management
 - Local UAV-regulations
 - Population density

- Flight planning
 - Safety
 - Accuracy requirements, ground control points (GCPs)
 - UAV and sensor
2 Measurement phase

- Final decision of flight and its parameters
- Ground Control Generation
- Aerial imaging
3 Data processing phase

- Photogrammetric processing
- Accuracy Evaluation
- Vectorization of data to a topographic data format
Test-case: Vihti, Finland (October 2016)

- Nummela center, 49 hectares
 - Densely populated area
 - Small airfield
 - Various building types
Planning I

- Finnish regulation by the Finnish Transport Safety Agency (Trafi)
- Risk assessment report & UAV manual
- Informing the airfield and creation of aviation warning (NOTAM)
- Notification / bulletin to residents
- Flight planning
 - Flight trajectories, Visual-line-of-sight (VLOS)
 - Lift-off / Landing site
Planning II

- Flight plans: Three nadir imaging flights
Measurements

• The UAV-system:
 – Tarot 960 foldable frame
 – 3DR Pixhawk with Arducopter
 – Approx. 6 kg
• Samsung NX500 RGB camera
• GCPs measured with Trimble R10 VRS-RTK- GNSS system
• Fully sunny day
Data processing

• Processing using Pix4D
• Ground Sampling Distance (GSD): 2.93 cm
• Number of images: 1334
• Ground control Points (GCP) 10 kpl
 – RMSE: X 0.0021 m, Y 0.0014 m, Z 0.0015 m
• Image overlaps:
 – Forward overlap 90%
 – Sidelap 70%
• > 800 points / m²
FIG WORKING WEEK 2017

Focusing the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

Transition to augmented reality
Vectorization

- Work has been concentrated on buildings and automatic methods
 - Automatic building vectorization using TerraScan software (Terrasolid Ltd., Helsinki)

- There’s a lack of automatic methods for other targets than buildings
 - Manual labor is still required a lot in the data vectorization
RPAS-aineiston automaattinen luokittelu

- buildings
- ground

Kuvat: Tomi Rosnell
Conclusions

- UAV-photogrammetry provides low cost tool for producing 3D topographic data in urban areas, especially when small areas are of concern.

- Automated methods for point cloud vectorization needed.

- The use of UAVs in topographic data production will increase.

- UAV-based laser scanning will also increase as the sensors are getting smaller and prices are going down.
Kiitos!
Questions?

- Contact details:
- olli.nevalainen@nls.fi

Dronefinland: dronefinland.fi