FIG Working Week 2016

Press of Polarimetric and Spatial Press of Polarimetric and Spatial Patres for Built-up Mapping using ALOS PALSAR Polarimetric SAR Data

Shucheng You

Introduction

- Study Area and SAR Data
- Classification Methods
- Experiment Results
- Concluding Remarks

Introduction

- PolSAR provide information that can be used to interpret the complex scattering mechanisms between the radar signal and the natural media.
 However, due to the SAR imaging mechanism and complexity of ground surface, built-up mapping using PolSAR image still remains challenged challenge
- The objective of this research is to assess the performance of polarimetric and spatial features extracted from PolSAR data for built-up mapping using SVM and RF classifiers, respectively.
- Scattering entropy, scattering angle, and anisotropy computed from the Cloude decomposition are used to represent the polarimetric features, and the texture parameters extracted by the GLCM represents spatial feature objective

Study Area and SAR Data

Study Area

Land cover: water, farmland with different crop types, forest, built-up, bridge, major road and street, and bare soil.

Study Area and SAR Data

SAR Data

Preprocessing: multilooking, enhanced Lee filter Cloude decomposition Texture computation It is based on PolSARPro

built-up areas for reference

Satellite	L-band ALOS PALSA				
Date	April 4, 2009				
Mode	HH, HV, VH, VV				
Pixel spacing	9.37m×3.56m				
Center incidence	23.83°				
Pass	Ascending				
Image size	18432×1248 pixels				

Pauli composite image

Classification Methods

Classification Methods

Cloude decomposition parameters extraction

Texture parameters extraction

- a) eight texture variables (GLCM) : mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation
- b) Parameter setting: 3×3 pixels window size, 1×1 co-occurrence shift, 64 greyscale quantization levels
- c) span is used for textural feature parameters extraction

Feature parameters combination

Features combination	Features numbers	Input feature parameters for SVM and RF
F1	3	HH, HV, and VV intensity
F2	11	HH, HV, and VV intensity; span texture
F3	6	HH, HV, and VV intensity; Η/α/A
F4	14	HH, HV, and VV intensity; span texture; $H/\alpha/A$

Classifier selection

Built-up samples selection

Samples selection

built-up non-built-up

built-up high density built-up low density built-up non-built-up Water Farmland bare soil Forest

Road

.

Built-up samples mapping: SVM

SVM-F3

Featu	res combination	В	B-> N	N->B	Ν	Kappa
SVM	F 1	0.6384	0.3616	0.0891	0.9109	54.93%
	F2	0.9416	0.0584	0.1165	0.8835	82.51%
	F3	0.9764	0.0236	0.0015	0.9985	97.49%
	F4	0.9935	0.0065	0.0054	0.9946	98.81%

polarimetric and texture parameters contribute to results

Built-up samples mapping: RF

Fea	tures combination	В	B-> N	N->B	Ν	Kappa
RF	F1	0.9995	0.0005	0.0002	0.9998	99.93%
	F2	0.9998	0.0002	0.0001	0.9999	99.97%
	F3	0.9994	0.0006	0.0002	0.9998	99.92%
	F4	0.9998	0.0002	0.0001	0.9999	99.97%

polarimetric and texture parameters contribute to results

Built-up samples mapping: SVM vs RF

The majority of the builtups have been detected by SVM and RF classifier. Part of forest areas have been classified as built-up by SVM. The mapping results not only depend on the feature parameters but also on the classifier.

Difference of built-up mapping between SVM and RF classifier Difference of built-up mapping between SVM and RF

Concluding Remarks

- Assessing the polarimetric and spatial feature parameters for built-up mapping
- Comparatively investigating the performance SVM and RF classifiers.
- Both polarimetric and spatial feature parameters are effective for built-up mapping.
- SVM and RF are adequate built-up mapping using ALOS
 - PALSAR data.
- Further work will be focused on the separation of built-up and
- forest by considering other polarimetric and spatial feature
 - parameters and improving the performance of classifier.

FIG Working Week 2016

Thanks for Your Attention