

from disaster

Organised by





Platinum Partners





Diamond Partner



CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

### Performance of Ionospheric Error Mitigation Techniques for Single-Frequency GNSS Positioning in the South East Asian Region

Shien Kwun LEONG Regional Technical Support Engineer









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Contents**

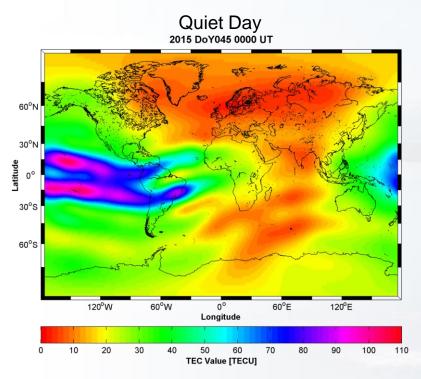
- Motivation
- Positioning Results
  - Single-Frequency GNSS Point Positioning
  - Single-Frequency GNSS Differential Positioning
- Concluding Remark

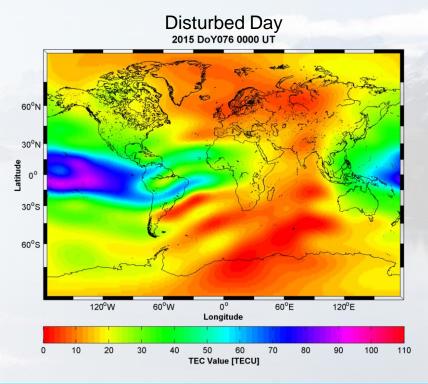









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

#### **Motivation**

Center for Orbit Determination in Europe (CODE) Global Ionosphere Maps (GIM)













CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Motivation**

- Typical mitigation approach for GNSS positioning
  - Dual-frequency: Form ionosphere-free linear combination
  - Single-frequency:
    - Klobuchar model
    - International Reference Ionosphere (IRI)
    - NeQuick
    - Global Ionosphere Maps (GIM)









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Motivation**

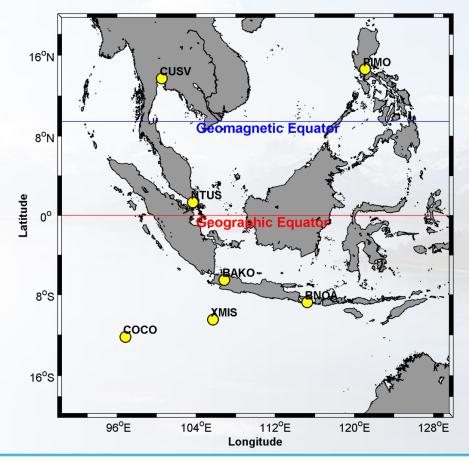
- Under different solar activity, baseline lengths & ionosphere models ...
  - What would be the achievable accuracy for Single-Frequency Point Positioning (SFPP) and Single-Frequency Differential Positioning (SFDP) in South East Asia (SEA)?
  - Which ionosphere model is suitable for SEA region?










CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

### **Test 1: Single-Frequency GNSS Point Positioning**

Area of study

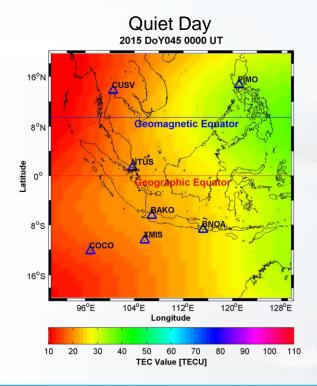


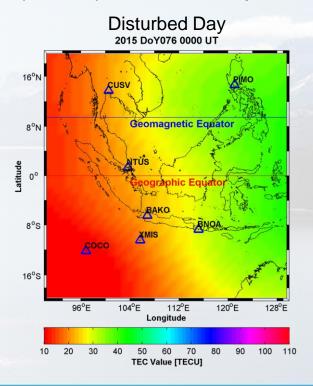









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

### **Test 1: Single-Frequency GNSS Point Positioning**

Center for Orbit Determination in Europe (CODE) Global Ionosphere Maps (GIM)













CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

### **Test 1: Single-Frequency GNSS Point Positioning**

Processing parameters and strategy

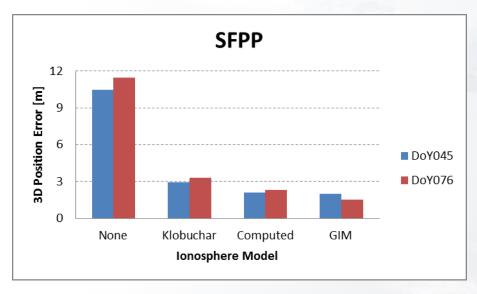
| Processing Parameters   | Processing Strategy                 |
|-------------------------|-------------------------------------|
| Software                | Leica Geo Office 8.4                |
| Positioning mode        | Static Point Positioning            |
| Satellite system        | GPS+GLONASS                         |
| Frequency               | L1 only                             |
| Observables             | Smoothed code                       |
| Elevation cut-off angle | 10°                                 |
| Sampling rate           | 30 seconds                          |
| Satellite ephemeris     | IGS precise final orbit (SP3)       |
| Troposphere correction  | Hopfield model                      |
| Ionosphere correction   | Broadcast Klobuchar model           |
|                         | Computed model (Single-layer model) |
|                         | CODE Global Ionosphere Maps (GIM)   |

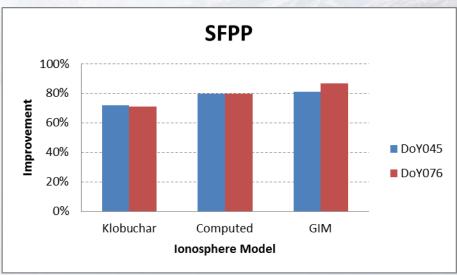









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

### **Test 1: Single-Frequency GNSS Point Positioning**

- CODE GIM
  - Average 3D position error < 2 m</li>
  - > 80% improvement



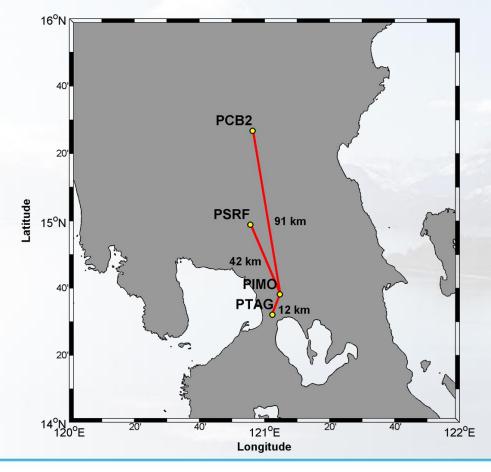











CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Test 2: Single-Frequency GNSS Differential Positioning**

- Area of study
  - PageNET

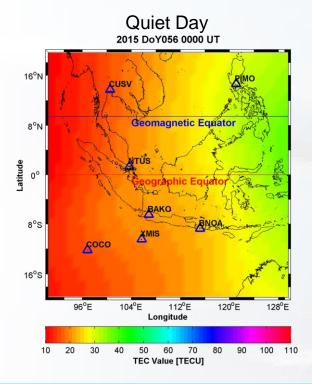


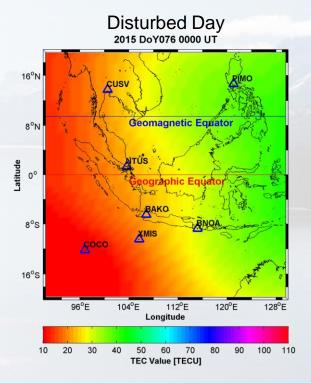









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

#### **Test 2: Single-Frequency GNSS Differential Positioning**

Center for Orbit Determination in Europe (CODE) Global Ionosphere Maps (GIM)













CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Test 2: Single-Frequency GNSS Differential Positioning**

Processing parameters and strategy

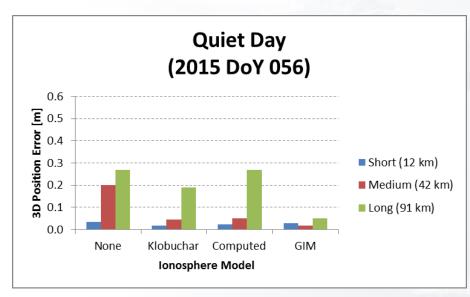
| Processing Parameters   | Processing Strategy                 |
|-------------------------|-------------------------------------|
| Software                | Leica Geo Office 8.4                |
| Positioning mode        | Static Differential Positioning     |
| Satellite system        | GPS+GLONASS                         |
| Frequency               | L1 only                             |
| Observables             | Carrier phase                       |
| Elevation cut-off angle | 10°                                 |
| Sampling rate           | 30 seconds                          |
| Satellite ephemeris     | IGS precise final orbit (SP3)       |
| Troposphere correction  | Hopfield model                      |
| Ionosphere correction   | Broadcast Klobuchar model           |
|                         | Computed model (Single-layer model) |
|                         | CODE Global Ionosphere Maps (GIM)   |

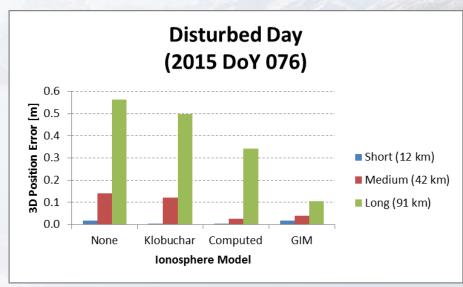









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

#### Test 2a: Single-Frequency GNSS Differential Positioning

- Number of epoch: 2880 s
- SFDP with CODE GIM: 2 cm accuracy in medium baseline
- CODE GIM is effective for medium and long baselines



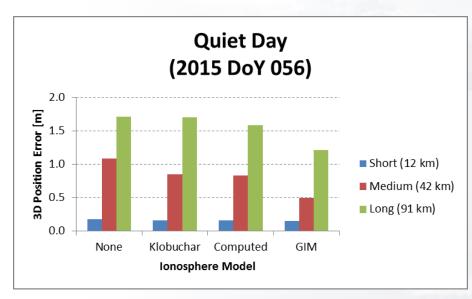


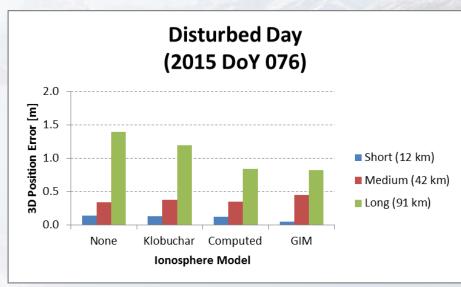









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

#### **Test 2b: Single-Frequency GNSS Differential Positioning**

- Number of epoch: 120 s
- Insignificant difference in ionosphere model performance for short baseline



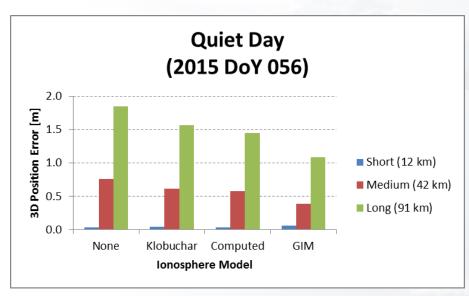











CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

#### **Test 2c: Single-Frequency GNSS Differential Positioning**

- Number of epoch: 240 s
- As expected, more data improves positioning results



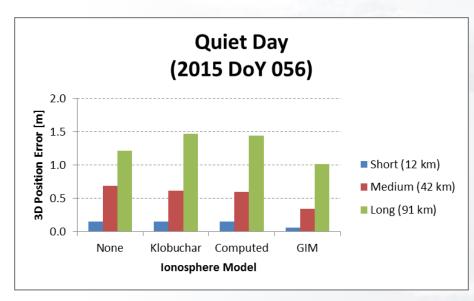


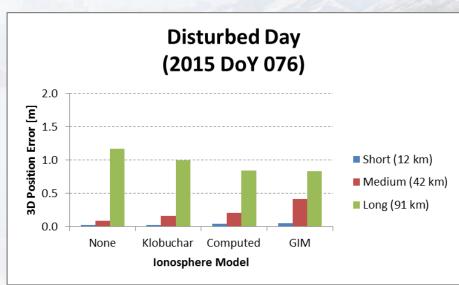









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

#### Test 2d: Single-Frequency GNSS Differential Positioning

- Number of epoch: 360 s
- For CODE GIM, increasing the amount of data does not significantly improve the positioning results













CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

### **Concluding Remark**

- CODE GIM improves SFPP by 80%
- Achievable 3D accuracy of SFDP: 2 cm for medium baseline (42 km)
- In most cases, CODE GIM (global model) performs better than Computed model (local model) especially for long baseline, regardless of amount of data
- CODE GIM is effective for medium and long baselines









CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

### **Acknowledgement**

- IGS (International GNSS Service) data and products
- Center for Orbit Determination in Europe (CODE) products
- Dr. Peter N. Tiangco from National Mapping and Resource Information Authority (NAMRIA), Philippines for contribution of PageNET data







