

from disaster

Validation of GNSS-based high-precision velocity estimation for outdoor sports

G. Boffi¹, M. Gilgien², A. Wieser¹

¹ Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland

² Department of Physical Performance, Norwegian School of Sport Science

Platinum Partners:

Diamond Partner

and Information

w Zealand

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Introduction

- Outdoor **sports** and **surveying** are faced to similar challenges
 - precise timing
 - positioning
 - velocity estimation
- In sports were the **path length** is **equal** for each athlete velocity is usually determined using photocells systems
- Trajectory and instantaneous velocity are necessary for performance analysis and research

Recovery

http://www.live-production.tv/

Platinum Partners:

esr

Diamond Partner

Trimble.

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Introduction

- **Photogrammetric systems** are applied to reconstruct the body dynamic.
- Sports over large spatial volumes apply GNSS
- Goal: assessment of the accuracy of velocity GNSS measurement

Land Information New Zealand Toitü te whenua

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

GNSS velocity computation

- The Doppler shift f_d of the GNSS signals is proportional to the relative velocity between satellite v_s and receiver v_r
- Highly precise Doppler observables are obtained as time-derivative of the carrier phase Φ
- The observations are processed kinematically in an Extended Kalman Filter (EKF) using a MATLAB-based GNSS postprocessing software.

$$f_d^{obs} - f_d^{sat} = \frac{1}{\lambda} \mathbf{a}^T \boldsymbol{v}_r - f_0 \dot{b_r} + \varepsilon$$

esr

Platinum Partners:

Trimble.

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

GNSS velocity computation

- Many effects will affect a static receiver like a kinematic one
- The level of random observation noise is expected to be higher
- Static test as an indication of the accuracy

	σ_v [mm/s]
Geodetic receiver	3.5
Consumer-grade receiver	8.5

$$\sigma_{\overline{v},G} = rac{1}{\sqrt{n}}\sigma_v$$

$$\bar{v}_{i,j}^p = \frac{d_{i,j}}{(t_j - t_i)}$$

$$\sigma_{\bar{v}_{i,j}^p} = \sqrt{\left(\frac{\partial \bar{v}_{i,j}^p}{\partial t_i}\right)^2 \cdot \sigma_{t_i}^2 + \left(\frac{\partial \bar{v}_{i,j}^p}{\partial t_j}\right)^2 \cdot \sigma_{t_j}^2 + \left(\frac{\partial \bar{v}_{i,j}^p}{\partial d_{i,j}}\right)^2 \cdot \sigma_{d_{i,j}}^2} = \frac{\bar{v}_{i,j}^p}{d_{i,j}} \sqrt{2 \cdot \left(\bar{v}_{i,j}^p \sigma_t\right)^2 + \sigma_{d_{i,j}}^2}$$

Platinum Partners:

Trimble.

from disaster

Diamond Partner

Land Information

w Zealand

Comparison between the velocities estimated using GNSS and photocells

- Additional requirements:
 - The travelled distance with an accuracy of a few cm
 - Stable relation between the GNSS antenna and the part triggering the photocells
 - Repeatable experiment

Platinum Partners:

Trimble.

 Representative dynamic for outdoor sports (e.g. alpine skiing)

esri

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Kinematic test measurements

- 51.2 m, equipped with 9 photocells
- Distances between the photocells intervals from 3 m to 12 m
- 6 runs with average velocities • varying from 45 km/h to 55 km/h
- 2 GNSS equipment
 - A geodetic GNSS receiver (Leica 1200) and antenna (Leica AS10)
 - A consumer-grade GNSS receiver (ublox EVK6T) and antenna (ANN-MS)

Land Information lew Zealand

Diamond Partner

Trimble

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Results and discussion

Geodetic receiver:

Platinum Partners:

Trimble.

- optimized for quality

Consumer-grade receiver:

- fast signal acquisition
- tracking of weak signals

Velocity [km/h]

Diamond Partner

Land Information

New Zealand

esri

FIG Working Week 2016 CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016 Recovery

from disaster

Diamond Partner

esri

Land Information

lew Zealand

Results and discussion

Platinum Partners:

Strimble.

consumer-grade GNSS receiver

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Conclusion

- Development of a method to predict accuracies for velocity measurement using GNSS and photocells
- An **empirical test** measurement on a **coaster track** compared both velocity measurement systems
- A precision better than 10 mm/s can be obtained for the velocity estimated using a consumer-grade GNSS equipment

Strimble.

esri

Land Information New Zealand Toitū te whenua

Swiss Reception

Come along, have a drink, and win attractive prices!!!

> Thursday, 5 May, 5pm-6pm at "Lot 55 Café"

Platinum Partners:

Trimble.

esri