FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016

Recovery from disaster

Organised by FIG NZIS
Platinum Partners Trimble esri
Diamond Partner Land Information New Zealand
Teaching BIM to Geomatics Students

Paper #8384

Christian Clemen, Germany
Eugene McGovern, Ireland
Avril Behan, Ireland
Why BIM?

- BIM is cool
- Government and construction industry have high demands on BIM professionals

Why BIM for geomatics?

- Measured surveys are a big part of BIM
- Reliable as-built surveys and monitoring
- Managing TLS and Photoscanning
- Geodata-Management, Coordinates
- Legal Boundaries, Utilities and Infrastructure
How did we prepare as teachers?

- Textbooks and software Manuals are **NOT** enough, there is no traditional BIM curriculum yet.
- Realising BIM projects with **industry** partners
- Liaisons with other **faculties** (e.g. civil engineering faculty)
- Visiting other **universities** (e.g. DIT)
- Attending and helping standard organisations (DIN, DVW, FIG)
- Offering “off the job training”
What did we learn in Dublin?

- importance of **interdisciplinary** work
- **pointcloud** management with BIM software
- BIM **software tools** for engineering surveyors

BIM at Dublin Institute of Technology

- development of a suite of cross-disciplinary, collaborative, **postgraduate programmes in BIM** from 2014
- **Geomatics for BIM** module for MSc Geospatial Engineering

Practice #1 BIM basics

- BIM as **database** – not drawing
- precise modelling with building objects
- From floorplans, and sections to semantic 3D model with given drawing and workflows
Practice #2: Creating Types for Object Libraries

- Creating and managing **building elements** (objects) with Autodesk Revit Family Editor
- **Parameterisation** of dimensions and materials
- Showing the importance of **object libraries** also for measuring existing buildings
- Reference-plane and topology of building elements
Practice #3: Pointclouds – native support

- **preparation** of the point cloud for Autodesk Revit
- pointcloud as *reference for the digitalization* of building elements
- as-build comparison between an existing model of the building and the point cloud
Practice #4: Pointclouds – professional tools

- PointSense for Revit, Faro 3D Software GmbH (Dresden)
- Point cloud in family editor
- Semiautomatic detection and placing of building elements
- BIM-Beautification (89,9° vs. 90°)
Practice #5: Coordinate Systems

- **Concepts and limitations** of internal, project, shared coordinate system
- Working with **georeferenced** CAD-files
- **Adjusting** a planned building to a parcel boundary
- **Digital Terrain Models** (DTM)
Practice #6: Setting out

- managing **surveying points** with Autodesk PointLayout
- comparing points as-planned vs. as-built
- slap analysis
- setting out **reports**
- best-practice **workflows**
Practice #7: BIM to GIS

- **GIS**: Set up a coordination model with building, DTM, tunnel, railway, vegetation, lake, … (example taken from CityGML Homepage)
- **Management**: Importing and managing diverse models with Autodesk Navisworks
- **Analysis**: Clash detection
- **Visualisation**: Export to Google Earth Viewer (kml)
Open questions

• Is Autodesk Revit the right choice?
• How to find the balance between practical knowledge (“buttons”) and theoretical concepts?
• Should Software development for BIM (e.g. DYNAMO, C# API) be part of the education?
• What to leave out in traditional curriculum due to limited time?
Contacts

- Prof. Dr. - Ing. Christian **Clemen**, Dresden University of Applied Sciences (HTW)
 E-Mail: christian . clemen [at] htw-dresden . de
- Dr. Eugene **McGovern**, FSCSI, FRICS Dublin Institute of Technology
 E-Mail: eugene . mc govern [at] dit . ie
- Dr. Avril **Behan**, FSCSI, FRICS Dublin Institute of Technology
 E-Mail: : avril . behan [at] dit.ie