

Measured surveys – at the heart of every good survey is a strong specification (8064)

James Kavanagh MRICS C.Geog

Director Land & Resources Global Group

Content

Contents

- ► RICS brief introduction
- Survey specifications why, what and how
- ► BIM and Survey4BIM the RICS experience
- Measured Surveys of land, buildings and utilities 3rd ed best practice guidance – update and use
- Conclusions

Client education

That critical first meeting....

- Did you/they really mean that? Just what do they want it for? Fitness for purpose...
- ► Is the purpose agreed? And output/deliverable? And cost?
- ► National specifications highways, utilities, cadastre
- No-body likes surprises!
- Geo-speak

Potential problems, 1 common thread

- Valuation
- Development Land
- Construction multiple uses (control example)
- BIM and 3D

Survey Spec

International Standards

International property measurement standards - IPMS

Survey detail accuracy and valuation

C	A	Final	Minimum cigo of	Example of concern	Tranical use
scale	(X,Y)	r mai valuation accuracy*	feature to be shown to scale without generalisation	Example of survey	i ypicai use
1:20	+/- 5mm	0.5%	10mm	Engineering surveying and setting out, high accuracy measured building surveying, heritage recording	High accuracy engineering output, structural steel and complex refurbishment, high value commercial property
1:50	+/- 10	1%	20mm	Engineering surveying and setting out, measured building surveys, high accuracy topographic surveys, determined boundaries, area registration	Building surveys, refurbishment and space planning, demolition and structural engineering, commercial area registration
1:100	+/- 25mm	2%	50mm	Measured building surveys, low accuracy setting out, net area surveys, valuation surveys	General arrangement drawings for space planning, estate agency, residential valuation, low accuracy commercial development and valuation
1:200	+/— 50mm	4%	100mm	Low accuracy measured building surveys.	Planning, building footprint or detail design

International Standards

Land

BIM – the **RICS** experience

Survey4BIM

Five major geo-issues

- Interoperability
- Accuracy
- Level of detail
- Meta Data
- Generalisation

- Primary focus client education
- Placing the relationship and understanding between client and surveyor at the core of any survey project
- ▶ The Legacy ... 2nd ed 1997
- Rapid changes in technology and practice
- Core survey principles remain
- Internationalisation
- ► New elements:
- Survey detail accuracy banding table
- Inclusion of survey feature tables
- Setting-out, deformation, monitoring
- Expanded deliverables

RICS quidance note

Survey detail accuracy band table

Plan accuracy (X,Y)		Heigh	t accuracy (7)1					
Band	1 sigma	2 sigma	Band	Accuracy hard detail	Accuracy soft detail	Example survey types/uses ²	Approximate legacy plot scale output required to achieve accuracy band ^a	Min size of feature shown true to scale (not symbolised)
Α	+/- 2mm	+/- 4mm	Α	+/- 2mm	N/A	Monitoring, high accuracy engineering setting out and fabrication surveys	1:5	4mm
в	+/- 4mm	+/- 8mm	в	+/- 4mm	N/A	Monitoring, high accuracy engineering and measured building surveys and setting out	1:10	5mm
С	+/- 5mm	+/- 10mm	C	+/- 5mm	N/A	Engineering surveying and setting out, high accuracy measured building surveying, heritage recording	1:20	10mm
D	+/- 10mm	+/- 20mm	D	+/- 10mm	+/- 25mm	Engineering surveying and setting out, measured building surveys, high accuracy topographic surveys, determined boundaries, area registration	1:50	20mm
E	+/- 25mm	+/- 50mm	E	+/- 10mm	+/- 50mm	Measured building surveys, topographic surveys, low accuracy setting out, net area surveys, valuation surveys, area registration, utility verification (QL-A) PAS 128 (UK)	1:100	50mm
F	+/- 50mm	+/- 100mm	F	+/- 50 mm	+/- 100mm	Low accuracy measured building surveys, topographic surveys, high accuracy utility tracing, gross area surveys	1:200	100mm
G	+/- 100mm	+/- 200mm	G	+/- 50mm	+/- 100mm	Topographic surveys, low accuracy measured building surveys, utility tracing surveys, boundary mapping, high accuracy geotechnical, detection (QL-B1 PAS 128 (UK)	1:500	200mm
н	+/- 250mm	+/- 500mm	н	+/- 125mm	+/- 250mm	Low accuracy topographic surveys, national urban area mapping, geotechnical mapping, tree surveys	1:1000	500mm
I	+/- 500mm	+/- 1000mm	1	+/- 500mm	+/- 1000mm	Low accuracy topographic mapping, national non-urban mapping, general boundary mapping, asset mapping, utility survey – detection QL-B4 PAS 128 (UK)	1:2500	1000mm
L	+/- 1000mm	+/- 2000mm	J	+/- 1000mm	+/- 2000mm	Low accuracy route/corridor planning surveys, large area GIS asset mapping	1:5000	2000mm
ХY	(Custom)4		Z	(Custom)	(Custom)	Note: To create a customised band please select the band letter required and add as a prefix to XY or Z (i.e. +/-125mm plan = G-XY)		(Custom)

Control, coordinate arid and datum

- Move towards
- Control netwo

Background inf A network can i should also incl geometry to en mitigated and r throughout the links to nationa allowing a coord geospatially link coordinate syst

Recommended good practice

It is recommended to establish survey control in a hierarchy from primary to secondary to tertiary (first, second or third order) etc. working from the whole to the part (i.e. establish primary or first order control over the full extents of the survey followed by the addition of secondary/second order points etc. to increase density of survey control points for survey detail observation purposes).

The surveyor shall ensure that the required accuracy and suitability of survey control points and traverse/ network observations have been met prior to processing of survey detail observations.

The client and surveyor should consider survey control accuracy requirements for the life cycle of a project including future phases which may require a higher accuracy (i.e. setting out, monitoring). Maintenance of survey control is also important and is

covered in subsection 2.13.

ny (tick rvevor /- mm 100 of ...+/cess /- mm 100 dd 'n/a'

ished it

Measured building surveys

- Level of Detail (LoD) different accuracy bands for different levels of detail
- Output driven
- Direct links to IPMS & Code of Measuring Practice
- Introduction of BIM as an output
- Extensive feature tables

Underground utility surveys

Quality Level	Scope upon which results are based	Relative accuracy obtained	Relative confidence level in results	Relative cost
D	Desktop utility records search	Lowest	Lowest	Lowest
C	Site reconnaissance	Medium low	Medium low	Medium low
В	Detection with EML and GPR	Medium high	Medium high	Medium high
A	Verification using intrusive inspection	Highest	Highest	Highest

Comments

Deliverable

Setting out, deformation and monitoring surveys

- Output driven
- Control reuse issues underlined

Monitoring and deforma 7.3

- Output driven
- Types of movement
- Features to be monitorer
- Frequency

			•		typ	e	
derlined			Site mark out (set out points physically marked on the ground)				
		Set	ting out report				
7.9 Survey +	VDO	finr	clude surveyed	1 1	I		
7.5 Survey t	yhe						
A survey is requir	red to m	noni	tor the follow	ing types o	of		
movement:				5 71			
Movement type	Require	d	Comments				
Horizontal							
movement							
Vertical							
Verticality							
verucanty							
Tilt movement							
Vibrational movement							
Crack/joint expansion							
Other (specify)							

Required

Output

Deliverables – the key

- Client requirements
- Format and method of delivery
- CAD deliverables client or st
- Digital terrain model (TIN) deli^{*}
- Point Cloud Deliverables (inc.
- ► GIS
- Report deliverables
- Imagery, spreadsheet, textual
- Method of delivery
- Receipt
- Background information and re

Deliverable type	Suggested exchange formats		
CAD	*.dxf		
Digital terrain model (TIN/string)	*.dxf		
Digital terrain model (grid)	*.csv		
Photography	*.jpeg ; *.TIF, *.ECW		
Video imagery	*.mpeg, *.avi		
Point cloud	*.LAS; E57		
Survey reports	*.pdf, *.docx		
GIS	*.dxf, *.GML		
Textual data	*.csv, *.txt		
BIM	Revit [®] , AutoCAD, MicroStation and Navisworks		

Measured Surveys of land, buildings and utilities 3rd ed – best practice guidance

Conclusions

- Remember how important that first meeting with the client is!
- Survey purpose (and future use) drives cost, methodology and output
- Measured Survey specifications and 'fitness for purpose' are key to every survey project – understand the 'purpose' and 'output'
- No surprises!
- Don't blind clients with geo-speak
- Do not undersell your skillsets liability
- A common language and known industry standards/specifications can get surveyors to the top table
- ► Most of the developed world is already built measure it!
- Collaboration is everything

Contacts

James Kavanagh MRICS C.Geog

Director Land & Resources Group RICS 12 Great George Street, Parliament Square Parliament Square, London SW1P 3AD T: +44(0) 207 695 1598 Web: <u>http://www.rics.org/land</u> Email: <u>jkavanagh@rics.org</u> Linkedin: <u>uk.linkedin.com/pub/james-kavanagh/17/48b/654/</u>

Twitter - @jkavanagh99, #RICSland

