GESHUTRIC

AND CADASTRE

Jiyi Zhang

China University of Mining and Technology cumtzjy @cumt.edu.cn

Platinum Partners
Trimble
esri

Background

- Almost all the current existing cadastral data models are based on Euclidean Geometry and Linear Algebra
- Do not have a uniform representation for spatial units with different dimensions
- The separation between geometric expression and algebraic computation in 3D spatial units representation

Can we do something to make multidimensional cadastre more feasible?

- Find a more direct expression method extend from the 2D cadastre to the 3D cadastre?
- Do the geometric operation and computation in a more algebraic and tuitive way

Geometric Algebra

- A tool to solve geometric problems in algebraic form
- Integrate the geometric and algebraic representations of spatial units
- Express the different primitives in a unified form.

Basis of GA

- Basic elements: vectors, bi-vectors and tri-vectors
- Basic operators: Outer product, inner product, geometric product
- Other concept: Meet, Dual, Inverse, Grades, Blade, Pseudo-scalar, etc.

Basis of GA elements in 3D

- 1
- e1, e2, e3
- $\mathrm{e} 2^{\wedge} \mathrm{e} 3, \mathrm{e} 3^{\wedge} \mathrm{e} 1, \mathrm{e} 1^{\wedge} \mathrm{e} 2$
- $e 1^{\wedge}{ }^{\wedge} 2^{\wedge} \mathrm{e} 3$
scalar part
vector part
bivector part
trivector part
(grade 0)
(grade 1)
(grade 2)
(grade 3)

Outer product

- grade raising products
- combines elements of geometric algebra to form higher dimensional elements.(e.g. outer product of two vectors e1 and e 2 produces a bivector $e 1^{\wedge} \mathrm{e} 2$, and outer product of vector e 3 and bivector e1^e2 produces a trivector $\left.\mathbf{e} 1^{\wedge} \mathbf{e} \mathbf{2}^{\wedge} \mathbf{e} 3\right)$. In generalize: $\operatorname{grade}\left(\mathbf{X}^{\wedge} \mathbf{Y}\right)=\operatorname{grade}(\mathbf{X})+\operatorname{grade}(\mathbf{Y})$.
- anti-symmetry: $\mathrm{v}^{\wedge} \mathrm{w}=-\mathrm{w}^{\wedge} \mathrm{v}$, so that $\mathrm{v}^{\wedge} \mathrm{v}=0$

Outer product

Platinum Partners:
STrimble esri

Inner product

- grade reducing products
- Inner product is generalization of dot product in different dimensions which reduce lower dimension from higher dimension (Inner product on vectors is the same with dot product, inner product of bivector and vector is to find the perpendicular of lower one in the higher one). In generalize: $\operatorname{grade}(\mathbf{X} \cdot \mathbf{Y})=\operatorname{grade}(\mathbf{Y})-\operatorname{grade}(\mathbf{X})$. And if $\operatorname{grade}(\mathbf{Y})<\operatorname{grade}(\mathbf{X})$, we get zero.
- conditional symmetry : if $\operatorname{grade}(\mathbf{X})=\operatorname{grade}(\mathbf{Y})$, then $\operatorname{grade}(\mathbf{X} \cdot \mathbf{Y})=\mathbf{0}$. so, $\mathbf{X} \cdot \mathbf{Y}=\mathbf{Y} \cdot \mathbf{X}$.

Inner product

Multivector

- A multivector is a basic mathematical element that can simultaneously integrate multiple dimensional objects in geometric algebra.
- An example of multivector: e1+2*e1^e2+e3^e1.

Conformal Geometric Algebra (CGA)

- A branch of geometric algebra.
- Traditional Euclidean 3D objects can be expressed in 5D conformal geometric space which is constructed by five basic vectors: $e_{1}, e_{2}, e_{3}, e_{0}, e_{\infty}$.
- e_{1}, e_{2}, e_{3} are the same as traditional vectors, e_{0}, e_{∞} are two additional vectors denote original point and infinite point.
- The Grassmann structure corresponds to the hierarchical structure of dimensions in CGA

ת FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Table 1. Outer product expression of geometric objects in CGA.

Object	Drawing	Outer Production	Grade
Point	${ }_{\bullet}$	Null	1
Point pair	$P_{1}{ }^{\bullet} \quad P_{2}{ }^{\bullet}$	$P P=P_{1} \wedge P_{2}$	2
Line	$P_{1}^{0} \quad{ }^{0} P_{2}$	$L=P_{1} \wedge P_{2} \wedge e_{\infty}$	3
Circle		$C=P_{1}{ }^{\wedge} P_{2}{ }^{\wedge} P_{3}$	3
Plane	$\bullet_{P_{2}}$ ${ }^{P_{1}}$ P_{3}^{\bullet}	$P=P_{1} \wedge P_{2} \wedge P_{3} \wedge e_{\infty}$	4
Sphere	$\begin{array}{ll} P_{1} & \bullet P_{2} \\ \bullet P_{4} & P_{3} \bullet \end{array}$	$S=P_{1} \wedge P_{2} \wedge P_{3} \wedge P_{4}$	4

Cadastral primitives expression based on CGA

- Select points, boundary lines and boundary faces as the basic primitives for cadastral spatial units representation.
- So the three types of primitives' conformal expression can be defined as follows.

$$
\text { GeoPrim }_{<k>}=\left(\begin{array}{cc}
P & k=1 \\
P_{1} \wedge P_{2} \wedge e_{\infty} & k=3 \\
P_{1} \wedge P_{2} \wedge P_{3} \wedge e_{\infty} & k=4
\end{array}\right)\left\{P_{1}, P_{2}, \ldots P_{n}\right\}
$$

Cadastral primitives expression based on CGA

GeoPrim $_{<4\rangle}=\left(P_{1} \wedge P_{2} \wedge P_{3} \wedge e_{\infty}\right)\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$

Cadastral spatial units expression based on CGA

- Since cadastral spatial units maybe 2D or 3D objects that is composed by different dimensional primitives. The multivector structure in CGA is employed to organized and stored those components as follows.

MultiVector ${ }_{<\text {GeoParcel }>}=\left\{\right.$ GeoPrim $\left._{<1>}\right\}+\left\{\right.$ GeoPrim $\left._{<3>}\right\}+\left\{\right.$ GeoPrim $\left._{<4>}\right\}$

FFIG Working Week 2016
CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Cadast

We have know that spatial units can be expressed in a unified form based on CGA.

Can we update them in a different way compare to traditional method?

CGA-based merging method

- Spatial units merging method based on CGA include three steps:
- 1. Get intersection results for two relative spatial units;
- 2. If there is a common parts, then compute the results of Boundary operation for two relative spatial units to confirm the intersection of cadastral components;
- 3. If the two spatial units need to merge, then update their multivector representation.

Meet operation

- If A and B are two blades in $C l_{4, l}$, the meet operator for A and B is defined as follow:

$$
\begin{aligned}
& M=\operatorname{Meet}(A, B)=A \cap B=A^{*} \cdot B \\
& M^{2}=\left\{\begin{array}{l}
=0 \quad \text { no intersection } \\
>0 \quad \text { intersection exists }
\end{array}\right.
\end{aligned}
$$

- It should be noted that Meet operation only applied to blades rather than multivector.

Boundary operation

- If $C A$ and $C B$ are two primitive components that contained in blades A and B in $C l_{4, I}$ with the same dimensions, the boundary operator for them is defined as follow:

$$
\begin{aligned}
& \text { Boundary }(C A, C B) \\
& =\text { Boundary }(\text { Ptas }, C B) \& \text { Boundary }(\text { Ptbs }, C A) \\
& =(m P t a s, n P t b s),(0,0)
\end{aligned}
$$

- Where mPtas and nPtbs are the boundary point sets that construct $C A$ and $C B$, respectively. m Ptas is the number of points belonging to $C A$ that contained in $C B$ and $n P t b s$ is the number of points belonging to $C B$ that contained in $C A$.

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Boundary operation

- Suppose that \boldsymbol{m} and \boldsymbol{n} denote the total nunber points belonging to $C A$ and $C B$, respectively. Then we can conclude as following:
- (1) if $m P t a s=n P t b s=m=n$, this mean that $C A$ and $C B$ are the common parts which have to disappear in the process of cadastral objects merging;
- (2) if $0<m P t a s=n P t b s<m=n$ and the normal direction of $C A$ and $C B$ is the same, this mean that and are the two parts that possibly need to merge;
- (3) if m Ptas $=n P t b s=0$, this mean that $C A$ and $C B$ are disjoint.

Merging operation

- Suppose face $_{\langle A\rangle}$ and face $e_{\langle B\rangle}$ are two constructive faces in for cadastral A and B, their conformal representation are shown as following:

$$
\begin{aligned}
& \text { Face }_{<A\rangle}=\left(P_{a_{1}} \wedge P_{a_{2}} \wedge P_{a_{3}} \wedge e_{\infty}\right)\left\{P_{a_{1}}, P_{a_{2}}, P_{a_{3}}, \cdots, P_{w}, P_{x}, \cdots, P_{y}, P_{z}, \cdots, P_{a_{m}}\right\} \\
& \text { Facet }_{<B\rangle}=\left(P_{b_{1}} \wedge P_{b_{2}} \wedge P_{b_{3}} \wedge e_{\infty}\right)\left\{P_{b_{1}}, P_{b_{2}}, P_{b_{3}}, \cdots, P_{s}, P_{y}, \cdots, P_{x}, P_{t}, \cdots, P_{b_{n}}\right\}
\end{aligned}
$$

- Then the result of combination is shown as follows:

Facet $_{<A B>}=\left(P_{b_{1}} \wedge P_{b_{2}} \wedge P_{b_{3}} \wedge e_{\infty}\right)\left\{P_{b_{1}}, \ldots, P_{s}, P_{z}, \ldots, P_{a_{m}}, P_{a_{1}}, \ldots, P_{w}, P_{t}, \ldots P_{b_{n}}\right\}$

- The point sets P_{x}, \ldots, P_{y} in face ${ }_{<A\rangle}$ are same with the inversion of the point sets P_{y}, \ldots, P_{x} in face $_{\langle B\rangle}$.

Platinum Partners:
食Trimble.

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Merging result

Platinum Partners:
Trimble esri

Diamond Partner
(New Zealand Toito te whenua

Conclusion

- Spatial units in all dimensions can be expressed using CGA in a unified form as an entity
- All components of spatial units are organized in the multivector structure
- Components with lower dimensions can be extracted from those with higher dimensions (from the boundary point sets)
- Spatial units updating by CGA operators can be realized in a more algebraic way

References

- Jiyi Zhang, Pengcheng Yin, Gang Li, Hehe Gu, Hua Zhao, Jianchun Fu (2016). 3D Cadastral Data Model Based on Conformal Geometry Algebra. ISPRS International Journal of Geo-Information, 5, 20, doi:10.3390/ijgi5020020.
- Hestenes's Site: http://modelingnts.la.asu.edu/
- Lounesto's Site: http://www.helsinki.fi/~lounesto/
- Cambridge Group: http://www.mrao.cam.ac.uk/~clifford/

