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SUMMARY 

Fully polarimetric synthetic aperture radar (PolSAR) has the advantage for working at all time and 

all weather compared with optical remote sensing. It can provide four channel data, including HH, 

HV, VH, and VV, which is usually called sinclair matrix. The sinclair matrix can be used to 

describe the relative pure targets. Concerning to the distributed targets, it is necessary to use 

coherence or covariance matrices that computed from the sinclair matrix. Sinclair matrix, coherence 

matrix, or covariance matrix are directly related to the physical properties and backscattering 

mechanisms of natural medium. Based on these matrices, target decomposition theorem can be used 

to explore more additional information for the scattering medium. However, in the urban areas, the 

surrounding environment is complex and difficult to describe. Different targets may contribute to 

the same scattering mechanisms, and the same medium may produces the different scattering 

responses. Therefore, it is necessary to utilize the complementary information between the 

polarimetric and spatial feature parameters. Spatial features can reveal the orientation, geometry, 

and material of urban structures, which can provide essential information for built-up mapping. In 

this study, the polarimetric and spatial feature parameters are assessed for built-up mapping based 

on support vector machine (SVM) and random forest (RF). The Cloude decomposition parameters, 

including scattering entropy, scattering angle, and anisotropy, are selected as the representative 

polarimetric feature parameters. The texture parameter computed from gray level co-occurrence 

matrix (GLCM), including the mean, variance, homogeneity, contrast, dissimilarity, entropy, 

second moment, and correlation, are chosen as typical spatial feature parameters. The SVM and RF 

are used as the classifiers to assess the performance of feature parameters for built-up mapping. 

ALOS PALSAR full PolSAR data are used to conduct the experiment. From the mapping results, it 

is concluded that both polarimetric and spatial feature parameters, SVM and RF are effective for 

built-up mapping. Further works have to be continued on the selection of effective feature 

parameters and classifiers for built-up mapping. 
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1. INTRODUCTION 

Synthetic aperture radar (SAR), depending on its high spatial resolution, multiple work modes, 

flexible polarizations, and interference ability, have attracted more and more attentions in the field 

of land use and land cover mapping (Zhu et al., 2012; Du et al., 2015). In particularly, polarimetric 

SAR (PolSAR) can provide unique information that can be used to interpret the complex scattering 

mechanisms between the radar signal and the natural media (Cloude and Pottier, 1996, 1997; 

Freeman and Durden, 1998; Yamaguchi et al., 2006; Touzi, 2007). However, due to the SAR 

imaging mechanism and complexity of ground surface, built-up mapping using PolSAR image still 

remains challenged (Zhu et al., 2012; Niu and Ban, 2013; Du et al., 2015). 

The polarimetric properties and scattering mechanisms of built-up targets are complex and difficult 

to describe (Zhu et al., 2012; Niu and Ban, 2013). That’s because the backscattering from the built-

up areas is a mixture of various scattering mechanisms, which is contributed by the orientation, 

geometry, and material of urban structures (Niu and Ban, 2013). Single scattering, double 

scattering, and volume scattering can be occurred randomly (Freeman and Durden, 1998; 

Yamaguchi et al., 2006; Touzi, 2007). To effectively interpret the scattering mechanisms of built-

up, different classifiers and machine learning methods have been used for PolSAR image 

classification (Du et al., 2015), such as support vector machine (SVM), random forest (RF), 

ensemble learning (EL), linear discriminative Laplacian eigenmaps (LDLE), maximum likelihood 

(ML), fuzzy c-means (FCM), and artificial neural networks (ANNs). As a matter of fact, the 

classification or mapping performance not only depends on the robustness of the classifiers, but also 

on the quality of feature parameters and training samples, especially for supervised classifiers (Niu 

and Ban, 2013; Du et al., 2015). Therefore, selecting effective feature parameters have been 

extensively investigated from different aspects in PolSAR applications. 

Target decomposition theorems have been proved to be a useful tool to fully understand the 

PolSAR information and interpret the scattering mechanisms of the natural media (Cloude and 

Pottier, 1996, 1997; Freeman and Durden, 1998; Yamaguchi et al., 2006; Touzi, 2007). Several 

coherent and incoherent decomposition methods have been developed. Among them, Cloude 

decomposition (Cloude and Pottier, 1996, 1997) and Freeman decomposition (Freeman and Durden, 

1998) are most widely used. The former is more of mathematical nature and seems to be 

exclusively intended for classification purpose. Compared with Freeman decomposition, which can 

separate three scattering mechanisms, Cloude decomposition can explain all the scattering 

mechanisms based on its decomposition parameters (Cloude and Pottier, 1996, 1997). Both of 

coherent and incoherent decomposition parameters have been investigated for PolSAR applications. 

In addition, the use of spatial features derived from image segmentation, texture analysis, or 

mathematical morphology, proves useful to classification processes (Zhu et al., 2012; Du et al., 

2015). Among them, texture is an effective representation of spatial relationship and contextual 
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information. Various texture measures based on histogram statistics, gray level co-occurrence 

matrix (GLCM), Markov random fields (MRFs), and Gabor wavelets have been widely investigated 

in PolSAR image classification (Franklin and Peddle, 1990; Gong and Howarth, 1992; Du et al., 

2015). Therefore, it is promising for PolSAR applications by combining the polarimetric and spatial 

features to provide additional information to handle classification task. 

The objective of this research is to assess the performance of polarimetric and spatial features 

extracted from PolSAR data for built-up mapping using SVM and RF classifiers, respectively. 

Scattering entropy, scattering angle, and anisotropy computed from the Cloude decomposition are 

used to represent the polarimetric features, and the texture parameters extracted by the GLCM 

represents spatial features. The paper is organized as follows. The study area and SAR data are 

described in section 2. The classification methods are fully given in section 3. The experiment 

results and analyses are demonstrated in section 4. Finally section 5 draws the conclusions of this 

work. 

 

2. STUDY AREA AND SAR DATA 

2.1 Study area 

The study area is situated in the Kushiro, Hokkaido, Japan (Figure 1). The central coordinates of the 

test site area is 42º59'05.45" N, 144º22'50.10" E. The dominant land cover includes water, farmland 

with different crop types, forest, built-up, bridge, major road and street, and bare soil. The 

municipality of Kushiro is surrounded by the water, farmland, and forest. The reference map used is 

collected by photo-interpretation of high resolution optical images in the Google Earth (Figure 2), 

which has been used in the previous studies (Du et al., 2015). 

 
Figure 1. Coverage of study area displayed in the Google Earth 
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2.2 PALSAR Data 

The L-band ALOS PALSAR data used in this study are acquired in full polarization mode on April 

4, 2009. The single look complex product includes four observations from HH, HV, VH, and VV 

polarization with nominal pixel spacing of 9.37m and 3.56m in the range and azimuth directions, 

respectively. The center incidence of the image is 23.83º with ascending orbit. There are 

18432×1248 pixels in the original image, and only a part of sub-region is selected to continue the 

subsequent experiments (Figure 2). The red polygons in Figure 2 stand for the reference built-up 

areas. 

 
Figure 2. Selected sub-region of the study area, which is displayed in the RGB composites of Pauli 

decomposition parameters 

The preprocessing for PolSAR data is done with PolSARPro (http://earth.eo.esa.int/polsarpro/) 

software, which is an open access PolSAR processing tool developed for and maintained by the 

European Space Agency (ESA). To reduce the spatial resolution, the multilooking process in the 

azimuth direction is done on the original single look complex (SLC) SAR data. Subsequently, 

enhanced Lee filter with 5×5 sliding window is used to eliminate the effect of speckle (Lee et al., 

1999). The filter size is chosen to preserve detail and spatial resolution. To extract the polarimetric 
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decomposition parameters, the Cloude decomposition is processed on the covariance matrix. The 

texture parameters of span are computed by the ENVI software. 

 

3. CLASSIFICATION METHODS 

3.1 Feature parameters 

Polarization of electromagnetic fields of target not only depends on the polarization of incident 

electromagnetic fields, but also the characteristics of targets, which can be recorded by the 

scattering matrix [S]. 
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Where H and V denote the horizontal and vertical polarization, respectively. For simplicity, a 

complex vector can be defined by the element of scattering matrix as (Lee and Pottier, 2009), 

 TVVVHHVHH SSSSk                                                  (2) 

Where T indicates the matrix transposition. For backscattering from a reciprocal medium, 

VHHV SS  . In case of backscattering, the scattering vector k can be rewrite as, 

 TVVHVHH SSSk 2                                                     (3) 

When the scattering matrix is available, the interaction between the radar wave and the medium can 

be fully described in terms of complete polarization responses. 

The polarimetric covariance matrix [C] is defined as, 
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Where * denotes the complex conjugate. Target decomposition theorems are effective to provide 

interpretation of scattering mechanism for the average target invariant to changes in wave 

polarization basis, and promote the polarization information being fully utilized. As proposed by 

Cloude and Pottier, the average covariance matric [C] can be decomposed into the sum of three 

independent coherent matrixes [Ci] by means of eigendecomposition (Cloude and Pottier, 1996, 

1997), 
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Where i  and ie  denote the corresponding eigenvalues and eigenvector, which represent the 

primary parameters of the eigendecomposition. Base on this, three polarimetric feature parameters 

including the scattering entropy H, scattering angle  , and anisotropy A are computed (Cloude and 

Pottier, 1996, 1997). 
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The entropy, ranging from 0 to 1, represents the randomness of a scattering medium from isotropic 

scattering (H=0) to totally random scattering (H=1). The scattering angle reveals the averaged 

scattering mechanisms from surface scattering to double scattering. The anisotropy reflects the 

relative magnitude of the second and third eigenvalues. 

In the spatial dimension, eight texture variables (3×3 pixels window size, 1×1 co-occurrence shift, 

64 greyscale quantization levels) are created using GLCM measures, including the mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment, and correlation (Franklin and Peddle, 

1990; Gong and Howarth, 1992; Zhu et al., 2012; Du et al., 2015). The total power in polarimetric 

radar system called span, which contains the information from the HH, HV, and VV, is used for 

textural feature parameters extraction, 

321  span                                                        (9) 

One of the objectives of this study is to comprehensively explore the different feature parameters 

for built-up mapping using polarimetric SAR image. Therefore, the following feature combinations 

are used for built-up mapping. The four different feature combinations are shortened as F1, F2, F3, 

and F4, respectively. 

Table 1. Different feature combinations for built-up mapping 

Features combination Features numbers Input feature parameters for SVM and RF 

F1 3 HH, HV, and VV intensity 

F2 11 HH, HV, and VV intensity; span texture 

F3 6 HH, HV, and VV intensity; AH //  

F4 14 HH, HV, and VV intensity; span texture; AH //  

 

3.2 Classifier 

Random forest is one of general form of decision tree based on ensemble methods. It is a 

combination of tree predictors in which decision trees are constructed using resampling technique 

with replacement and the inducers randomly samples the attributes and chooses the best split among 

those variables rather than the best split among all attributes (Du et al., 2015). 

Undecided pixels are assigned to each class that is based on a majority voting rule, which assigns a 

pixel to the class that obtains the maximum number of votes from the group of classification trees 

(Zhu et al., 2012). A certain percentage of randomly selected training samples are used to train each 

tree. Due to the important advantages such as handling very large number of input attributes and 

low time cost, random forest has widely attracted the interests of researchers from the context of 

remote sensing image classification. The number of decision trees in random forest is set as 100 for 

comparative analysis. 

SVM is a supervised binary classifier, which is aimed to divide the d-dimensional input feature 

space into two subspaces (one for each class) using a separating hyperplane (Patra and Bruzzone, 

2014). An important feature of SVM is related to the possibility to project the original data into a 

higher dimensional feature space via a kernel function that implicitly models the classification 

problem into a higher dimensional space where linear separation between classes can be 
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approximated (Patra and Bruzzone, 2014). During the implementation, the LIBSMV, which is 

popular open source SVM software, is used as the SVM classifier. 

 

3.3 Technical steps for classification 

Based on the selected classifiers and feature parameters, the built-up mapping framework is 

designed. The details for the mapping are given in the following steps (Figure 3). 

Step 1: Multi-looking and speckle filtering are processed for the PALSAR SLC data. 

Step 2: Extracting the matrix elements C11, C22, and C33 from covariance matrix, which is 

converted in the unit of DB. 

Step 3: The element of span (unit DB) is obtained from covariance matrix, and the texture feature 

parameters are computed based on GLCM measurements, including the mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. 

Step 4: Cloude decomposition is done on the covariance matrix to extract scattering entropy, 

scattering angle, and anisotropy. 

Step 5: Training SVM and RF based on the selected samples of built-up and non-built-up. 

Step 6: Built-up mapping using SVM and RF based on different combinations of feature parameters. 

 
Figure 3. Technical flow for built-up mapping using PolSAR data 
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4. RESULTS 

The SVM and RF are classified as supervised classifiers, which are sensitive to the training samples 

(Patra and Bruzzone, 2014). The samples of built-up and non-built-up are selected, which is 

displayed in Figure 4. The built-up types include the high density built-up and low density built-up. 

The samples types for non-built-up include the water, farmland, bare soil, forest (Figure 4). The 

major road and street are difficult to capture, therefore the samples belong to this type is not chosen. 

The kappa statistic is used for evaluating built-up mapping performances of SVM and RF. There is 

no ground truth for the whole study area, and only the selected samples are involved for evaluation 

of mapping accuracy. 

 
Figure 4. Training samples selectd for built-up mapping 

From the results of accuracy evaluation, it is found that both of polarimetric and texture feature 

parameters contribute to the mapping results. In addition, the RF performs better than SVM for its 

higher kappa coefficients. To fully validate the effectiveness of polarimetric and texture feature 

paramater for mapping, the trained SVM and RF are used to the whole sub-image. 
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Table 2. Built-up mapping accuracy for SVM and RF classifier based on different feature 

parameters combinations 

Features combination B B->N N->B N Kappa 

SVM 

F1 0.6384 0.3616 0.0891 0.9109 54.93% 

F2 0.9416 0.0584 0.1165 0.8835 82.51% 

F3 0.9764 0.0236 0.0015 0.9985 97.49% 

F4 0.9935 0.0065 0.0054 0.9946 98.81% 

RF 

F1 0.9995 0.0005 0.0002 0.9998 99.93% 

F2 0.9998 0.0002 0.0001 0.9999 99.97% 

F3 0.9994 0.0006 0.0002 0.9998 99.92% 

F4 0.9998 0.0002 0.0001 0.9999 99.97% 

Figure 5 and Figure 6 give the built-up mapping results. Both of polarimetric and texture feature 

parameters have better results to those of SAR intensity. The roads are classified as built-up area 

based on the texture parameters. That’s because the roads have the rule structure, which is similar to 

the built-up. Scattering entropy, scattering angle, and anisotropy can distinguish different scattering 

mechanisms. The dominant scattering mechanisms for roads may be single scattering with double 

scattering being the second scattering type. The built-up, especially surround by the forest and 

farmland, may produce single, double, or volume scattering randomly with the surrounding 

environment. Concluded from the results, it is better for built-up mapping in urban areas using 

polarimetric parameters, and in rural areas using texture parameters, which is just referred based on 

SVM and RF classifiers. 

 
(a) SVM-F1                                                                  (b) SVM-F2 
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(c) SVM-F3                                                                  (d) SVM-F4 

Figure 5. Built-up mappings derived from different combinations of feature parameters based on 

SVM classifier 

Though the selected polarimetric and texture parameters achieve a good performance, there is still 

some farmlands and forests are classified as built-up, especially in the boundary between the built-

up and forest. Built-up can be seen as the constant target in the short time interval, whose scattering 

behavior may be largely influenced by human activity. Concerning to the farmland and forest, they 

are not only influenced by the human activity but also by the season change. Therefore, it is 

necessary to improve the built-up mapping from two aspects. On one hand, other polarimetric 

parameters, such as Freeman decomposition (Freeman and Durden, 1998), Yamaguchi 

decomposition (Yamaguchi et al., 2006), and Touzi decomposition parameters (Touzi, 2007), 

should be given more attenuations. On the other hand, multi-temporal SAR data may be effective to 

distinguish the built-up from the farmland and forest (Niu and Ban, 2013). Further studies will be 

concentrated on these two aspects. 
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(a) RF-F1                                                                  (b) RF-F2 

  
(c) RF-F3                                                                  (d) RF-F4 

Figure 6. Built-up mappings derived from different combinations of feature parameters based on RF 

classifier 

To compare the results between the two classifiers, the difference of built-up mapping between 

SVM and RF is given in Figure 7. From the difference image, it is found that the majority of the 

built-ups have been detected by SVM and RF. However, part of forest areas have been classified as 

built-up by SVM. The mapping results not only depend on the feature parameters but also on the 

classifier. Therfore, subsequent works have also to be paid on the improvement of classifier for 

built-up mapping. 
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Figure 7. Difference of built-up mapping between SVM and RF classifier 

 

5. CONCLUSIONS 

The main contributions of this study include: 1) assessing the polarimetric and spatial feature 

parameters for built-up mapping; and 2) comparatively investigating the performance SVM and RF 

classifiers. The Cloude decomposition parameters, including scattering entropy, scattering angle, 

and anisotropy, are used as representative polarimetric parameters. Texture parameters computed 

from GLCM, including the mean, variance, homogeneity, contrast, dissimilarity, entropy, second 

moment, and correlation, are used as representative spatial feature parameters. The results show that 

both polarimetric and spatial feature parameters are effective for built-up mapping. In addition, 

SVM and RF are adequate built-up mapping using ALOS PALSAR data. Both methods are only 

based on a few input variables and provide relatively accurate mapping results. It is regretted that 

the performance of SVM and RF are not good to distinguish built-up from forest. Further work will 

be focused on the separation of built-up and forest by considering other polarimetric and spatial 

feature parameters and improving the performance of classifier. In addition, high performance 

computing techniques for accelerating the SVM and RF is worthy to be investigated as well. 
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