

PARAMETER	EFFECT			
(1) Internal /equipment temperature	Data distortion.			
(2) Temperatute of scanned objects	Background radiation, degraded SNR, low precision.			
(3) Atmospheric variation (air temperature, humidity, pressure)	Refraction index, disturbing of EM propagation, pixel dropout.			
(4) Dust or vapors/gases	Edge effects, false return/multiple return pulse.			

Application of correction model

Horizontal and slope distance from TLS corrected using first velocity correction (K1), second velocity correction (K2) and geometry correction (K3) as formulated by Rueger (1990).

Horizontal distance correction.

	A~50 m	B~100 m	C~150 m
	Average correction (m)	Average correction (m)	Average correction (m)
K1	-1.149x10 ⁻²	6.846x10 ⁻³	9.825x10 ⁻³
K2	-4.479x10 ⁻¹¹	-1.714x10 ⁻¹⁰	5.020x10 ⁻¹⁵
K3	-1.092x10 ⁻⁷	-6.678x10 ⁻¹⁰	-5.867x10 ⁻¹³

Slope distance correction.

Average correction (m) Average correction (m) Average correction (m) K1 $-1.149x10^{-2}$ $6.857x10^{-3}$ $9.920x10^{-3}$ K2 $-4.480x10^{-11}$ $-1.722x10^{-10}$ $5.069x10^{-15}$ K3 $-1.092x10^{-7}$ $-6.711x10^{-10}$ $-6.038x10^{-13}$		A~50 m	B~100 m	C~150 m
K1 $-1.149x10^{-2}$ $6.857x10^{-3}$ $9.920x10^{-3}$ K2 $-4.480x10^{-11}$ $-1.722x10^{-10}$ $5.069x10^{-15}$ K3 $-1.092x10^{-7}$ $-6.711x10^{-10}$ $-6.038x10^{-13}$		Average correction (m)	Average correction (m)	Average correction (m)
K2 $-4.480x10^{-11}$ $-1.722x10^{-10}$ $5.069x10^{-15}$ K3 $-1.092x10^{-7}$ $-6.711x10^{-10}$ $-6.038x10^{-13}$	K1	-1.149x10 ⁻²	6.857x10 ⁻³	9.920x10 ⁻³
K3 -1.092×10^{-7} -6.711×10^{-10} -6.038×10^{-13}	K2	-4.480x10 ⁻¹¹	-1.722x10 ⁻¹⁰	5.069x10 ⁻¹⁵
1.0)2ATO 0.711ATO 0.050ATO	K3	-1.092x10 ⁻⁷	-6.711x10 ⁻¹⁰	-6.038x10 ⁻¹³

Preliminary Notes

Preliminary results of this research do not show the expected one, especially in correction results. K2 and K3 is not significant, possible due to some factors: short baseline, small elevation gradients, and insignificant Thp value between target and TLS stand.

Correction models of Rueger (1990) using Thp standard, and only involves CO_2 in the air. In this research, gas component is more varied (volcanic gases generally consist of a compound H_2O , N_2 , CH_4 , CO, CO_2 , SO_2 , H_2S , HCI, NH_3 and H_2O) that have different characteristics, so they have not been accommodated in this model.

- 1) Apply Zenith Hydrostatic Delay (Saastamoinen, 1972).
- 2) Compared and reviewed to determine the most suitable model. evaluate design of measurement
- Deploy the same method at normal/non volcanic environment. Result from volcanic and normal environment will be compare to see some possible solutions.
- Looking for another correction model also essential to get better result or if necessary create new correction formula.

