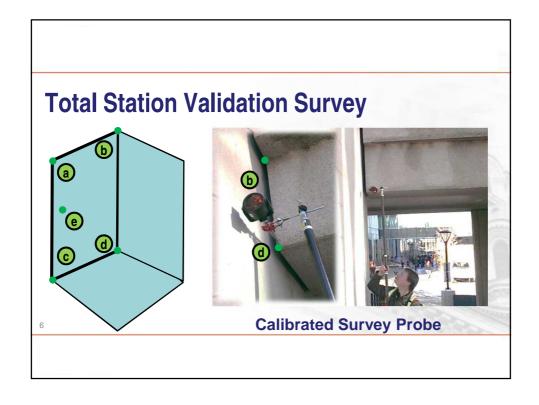
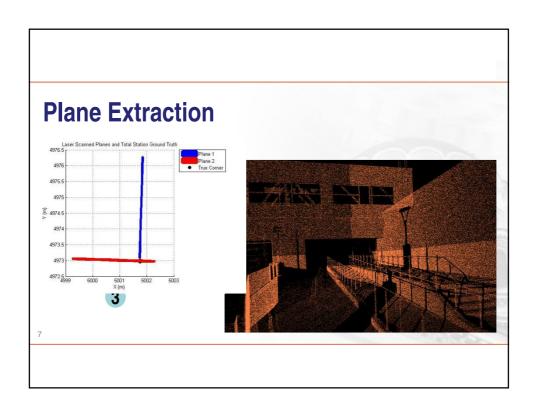


Overview

- Motivation: Can 3D property boundaries derived from laser scanned structures withstand cross-examination?
- Gap: Methodology needed when adequate facilities are unavailable for the calibration of laser scanners.
- ❖ Findings: Total station measurements can be used to drive a validation procedure for calibration and boundary positions.


Boundary Validation Procedure



Planes (1,2,3)
Extracted from
Laser Scanner Point Cloud

Points (a, b, c, d)
Validation from
Total Station Survey

Results

	Planes	Positions
Valid* / Total #	11 / 14	57 / 83
Precision (1σ)	±5 mm	±3 mm
Accuracy	±11 mm	

*Valid planes have all normal distances <20 mm Valid positions are <20 mm from the plane

Conclusions

- The validation methods shown are promising for land surveyors who wish to use laser scanners for cadastral surveying.
- Total station measurements can be used to validate the laser scanner self-calibration procedure where facilities are unavailable
- An independent measurement should always be done to validate the planarity of 3D boundaries
- Total station measurements provide an option for independently checking positions of 3D boundaries

Thank you!

Laser Scanning Validation Methods for Land Surveyors

FIG WORKING WEEK 17-21 MAY SOFIA BULGARIA 2

Boundary Validation Procedure

- **Experiment Area:** Typical urban structures.
- **Calibration:** Total station and laser scanner calibrated.
- ❖ Boundary Extraction: Planes that represent boundaries are extracted from the laser scanned point cloud.
- Validation: Total station validates both the calibration and the boundary extraction.