

"From the wisdom of the ages

Purpose of our work

- Presentation of a workflow for making measurements of

from a single low oblique aerial image without knowledge of the camera six-degrees-of-freedom pose
- The investigation of the accuracy that can be achieved
high oblique image \rightarrow tilted sufficiently to show the horizon low oblique image \rightarrow they do not include the horizon

Input data

- a low oblique aerial image
- the camera interior orientation
- the flying height of the aerial platform
- For vertical distances: the difference in elevation between the ground nadir and the point at the bottom of the vertical object
- For horizontal distances: the difference in elevation between the ground nadir and the endpoints of the horizontal line segment to be measured
average elevation difference between the region under the aerial platiorm and the region of interest depicted in the oblique photograph
e.g., from Google Earth

Calculation of vertical distances

- Similar triangles
- Law of cosines
- Trigonometric identities
- Pythagorean Theorem

Assessment of errors (1/4)

The variables that may affect the accuracy of the measurement of a vertical or a horizontal distance, due to their values and errors, are the following:

- the flying height
- the elevation difference $\Delta \mathrm{H}$
- the relative image positions of the two points being measured, which determine the length of their distance
- the camera interior orientation parameters
- the position of the nadir point in the image, which depends on the tilt of the camera axis and the camera constant

From the wisdom of the ages to the challenges of modern world"

Assessment of errors (2/4)

Assuming that:

- the camera interior orientation is known with very high accuracy (zero errors)
- the measurements of the image points are very accurate (error of 0.5 pixel in the measured coordinates of each point)
- the nadir point is accurately determined (error of 10 pixels in x and y coordinates) and considering
- a camera resolution of 60 MP and
the standard errors of the measured vertical and horizontal distances
- a pixel size of $6 \mu \mathrm{~m}$
were calculated by error propagation
for 4 case studies and for different combinations of the camera constant, the tilt angle and the flying height.

"From the wisdom of the ages to the challenges of modern world"

Conclusions

- An increase in the camera constant and in the tilt of the camera axis leads to higher accuracy in height measurements.
- The standard error of a horizontal distance is almost independent from the camera constant and the tilt angle.
- An increase in the error of H and in the error of ΔH generally increases the error of both vertical and horizontal distances. An increase in the flying height reduces the effect of these errors on the standard error of the distance being measured.
- The standard error of a greater vertical and horizontal distance is generally worse than the error of a shorter one. An increase in the flying height reduces the effect of the length of the line segment on its standard error.

Future work

\checkmark More extended analysis of the errors of the measured distances

- by adopting different flight configurations
- by considering multiple scenarios as far as the availability of ground elevation data is concerned
- by conducting additional field work for the evaluation of the results
\checkmark Evaluation of the effects of the earth curvature and the atmospheric refraction
\checkmark Metric exploitation of high oblique aerial images

