
An Estimation of Needs and Availability of Geospatial Information Personnel In Indonesia

Fahmi Amhar, , Lalitya Narieswari, Sugeng Priyadi Badan Informasi Geospasial (BIG)
-- Geospatial Information Agency of Indonesia -email: fahmi.amhar@big.go.id



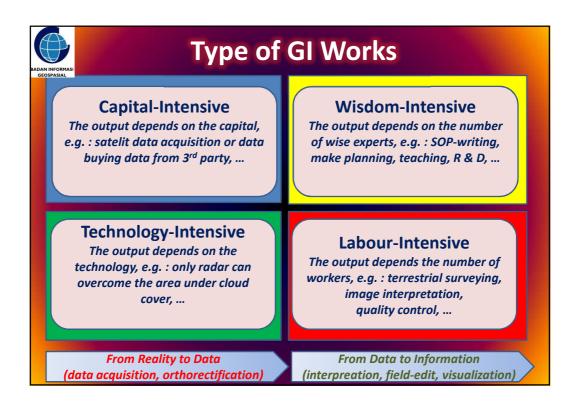
Objectives

- A. Estimation the number of Geospatial Information Personnel (GIP) which the <u>country</u> needs not only just needed by specific institution.
- B. Estimation the number of GIP which the <u>country</u> produces, not just produces by specific learning institute
- C. Estimation the gap, which can drive the policy in education and professional development

Scale (Level of Detail)

- 1. Not the whole country should be in the homogene scale
- 2. Scale priority according to population density & growth
- 3. According simulation, coverage of the scale are:

1:50.000 : 658.781 sqkm (35,4%),

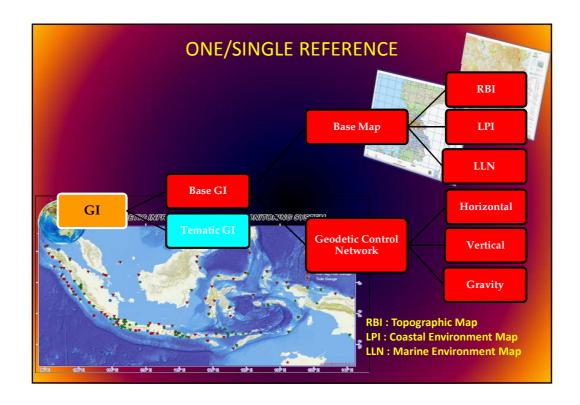

1:25.000 : 771.385 sqkm(41,5%),

1:10.000 : 299.888 sqkm (16,1%),

1:5.000 : 124.739 sqkm (6,7%),

1:1000 : 3.804 sqkm (0,2%).

4. The larger the scale, the shorter is the update cycle


Personnel Capacity 1. The effort for each sqKm Geospatial Information: GI-type = scale: ManHour (MH) : Technology **situation map = 1:1000 : 50 MH: TLS** *situation map = 1:5000:* 10 MH: UAS 5 MH: aerial/satellite ima topo-map = 1:10.000:topo-map = 1:25.000:2 MH: aerial/satellite img 2. The working composition **Data acquistion Operator 25%** Interpreation/field-edit/visualization 65% Planning/Management/Quality Assurance 10% 3. 1 sheet 1x1 m will need GIP at 1:1000 (1sgkm)= 50 MH; 1:5000 (25sgkm)=250 MH; 1:10000 (100sqkm)=500 MH; 1:25000 (625sqkm)=1250 MH.

Needed Land Basic GI Personnel

- In one year, effective working average is about 1000 hour, due to delay in planning-execution, transportation, weather and also re-training, hollidays etc.
- 2. Considering the area, scale and capacity, the whole country needs for Basic GI is about 5006 Man-Years.
- 3. When the BGI should be updated every 5 years, then for BGI should be reserved about 1000 Men.
- 4. From this personnel, at least 10-20% should be in Gov for Planning, Management & Quality Assurance.
- 5. Not all GI Personnel should be Univ-graduee, many could be trained for 1-3 month according to specific competency
- 6. The same model should be work for Thematics GI

				- 11								207001		C00000	60320-0			
N		SKAL	A PETA RDT	R K	AB/K	OT	A SE INI	DONESI		1:50k	1:25k	1:10k	1:5k	1:2k	50	25	10	5
ij.									Jumlah	34	117	126	125	38	0	0	0	0
	1-	-		-	-	-	-	-		A 1 -	B 2 -	C 3 ~	D 4 -	E 5 ~	A 1 -	B 2 ~	C 3	- D
	NO	KODE	NAMA KABUPATEN I		JUMLAI		LUAS	JUMLAH	Density	9.2	68.2	504.3	3726.2	27533.1	1 1	2 -	3	Je 4
	PER	KODE	KOTA	KEC		A	WILAYAH	PENDUDUK	Densky	9.2	68.2	504.3	3726.2	27533.1				_
6	3	21.03	KAB, NATUNA	9	6	44	1511.88	87354	57.8		В					1512		
7	4	21.04	KAB. LINGGA*)	5	3	36	411.1	77078	187.5			С					411	
8	5	21.05	KOTA BATAM	8	51		969	572452	590.8				D					969
9	6	21.06	KOTA TANJUNG PINANG	4	18		239.4	160918	672.2				D					239
0	1	31.01	KAB.ADM.KEP.SERIBU""	2	6		8.69	21217	2441.5				D					9
1	2	31.71	KODYA JAKARTA PUSAT	8	44		50.56	912290	18043.7					E				
2	3	31.72	KODYA JAKARTA UTARA		31		162.95	1478729	9074.7					E				
3	4	31.73	KODYA JAKARTA BARAT	8	56		212.39	2146324	10105.6		-			E				_
4	5	31.74 31.75	KODYA JAKARTA SELAT KODYA JAKARTA TIMUR	10	65 65		122.46 183.24	1943473 2609638	15870.3 14241.6	-	-	_	_	E				_
5	1	32.01	KAB. BOGOR	40	16	410	3357.92	4038764	1202.8	_	-	-	D	E				3358
5	7	91.07	KAB. TELUK WONDAMA	6	10	56	5788	14165	2.4	А	_	_	U		5788		2	3330
6	8	91.08	KAB, KAIMA	7	1	77	18500	27908	1.5	A	_	_	_		18500			-
7	9	92.71	KOTA SORONG	4	20	- 11	717.9	141839		- "	_	С			10300		718	-
8	-							11.000			-	_						
9														-	OFFORO4		000000	104700
															658781	771385		
0															35.4%	771385 41.5%	299888	
0	> >	Prov-D	ensity / Kab-Density	-exp	Kab	-Densi	ty-RDTR	Kab-Density	/-RDTR (2)	2	1/[4						
0 d		Prov-D	ensity / Kab-Density	-exp	Kab	-Densi	ty-RDTR	Kab-Density	/-RDTR (2)) /8	2/0	4 [35.4%		16.1%	
0 4		Prov-D	ensity / Kab-Density								- had	wi	Lind	0	35.4%	41.5%	16.1%	6.7%
0 4		Prov-D	ensity / Kab-Density		_{Kab}			Kab-Density OJ ut			- had	wi	l Ind	lo	35.4%	41.5%	16.1%	6.7%
0 dead			ensity / Kab-Density OJ/km2	ar	ea (km	2)		tk	L	uas		l Ind		35.4%	41.5%	16.1%	6.7%
ear	ala	1:	OJ/km2	ar	ea (1 m	km 2 p	2)	OJ ut 1m2 p	tk	L	uas	n sk			35.4%	41.5% 80% tuntas	16.1%	OT OJ/1000
0 dead	ala			ar	ea (1 m	km	2)	OJ ut	tk	L	uas				35.4%	41.5%	16.1%	6.7% OT
0 dead	ala	1:	OJ/km2 B	ar	ea (km 2 p	2)	OJ ut 1m2 p	tk	L	uas	n sk		ini	35.4%	41.5% 80% tuntas	16.1%	OT OJ/1000
0 dead	ala	1: A 1,00	OJ/km2 B	ar	ea (km 2 p C	2)	OJ ut 1m2 po D	tk eta	L	uas	n sk	3,8	ini 04	35.4%	41.5% tuntas F 190,20	16.1%	OT OJ/1000 G 190.
0 dead	ala	1: A	OJ/km2 B	ar	ea (km 2 p C	2)	OJ ut 1m2 po D	tk eta	L	uas	n sk	ala	ini 04	35.4%	41.5% 80% tuntas	16.1%	OT OJ/1000 G
0 dead	ala	1: A 1,00 5,00	OJ/km2 B 0 50 0 10	ar	ea (km 2 p C 1	2)	OJ ut 1m2 po D 50 250	tk eta	L	uas	n sk	3,8 24,7	04 39	35.4% OJ-	41.5% tuntas F 190,20	16.1%	OT OJ/1000 G 190.
0 dead	ala	1: A 1,00 5,00 0,00	OJ/km2 B 0 50 0 10 0 5	ar	ea (km 2 p C 1 25	2)	OJ ut 1m2 pc D 50 250	ik eta	L	uas	n sk E 1	3,8 24,7 99,8	04 39 88	35.4% OJ	tuntas F 190,20 247,39	16.1%	OT OJ/1000 G 190. 1247. 1499.
0 dead	ala	1: A 1,00 5,00	OJ/km2 B 0 50 0 10 0 5	ar	ea (km 2 p C 1	2)	OJ ut 1m2 po D 50 250	ik eta	L	uas	n sk E 1	3,8 24,7	04 39 88	35.4% OJ	41.5% tuntas F 190,20	16.1%	OT OJ/1000 G 190.
0 dead	ala 1	1: A 1,00 5,00 0,00 5,00	OJ/km2 B 0 50 0 10 0 5 0 2	ar	ea (1 m	km 2 p C 1 25 00	2)	OJ ut 1m2 pc D 50 250 500	tk eta	L	uas	1 2	3,8 24,7 99,8 71,3	04 39 88 85	35.4% OJ-	tuntas F 190,20 247,39 499,44 542,77	16.1% 000 900 140	OT OJ/1000 G 190. 1247. 1499.
0 dead	ala 1	1: A 1,00 5,00 0,00	OJ/km2 B 0 50 0 10 0 5 0 2	ar	ea (1 m	km 2 p C 1 25	2)	OJ ut 1m2 pc D 50 250	tk eta	L	uas	1 2	3,8 24,7 99,8	04 39 88 85	35.4% OJ-	tuntas F 190,20 247,39	16.1% 000 900 140	OT OJ/1000 G 190. 1247. 1499.
ear	ala 1	1: A 1,00 5,00 0,00 5,00	OJ/km2 B 0 50 0 10 0 5 0 2	ard@	ea (1 m	km 12 p C 1 25 00 25	2) eta	OJ ut 1m2 pc D 50 250 500	eta	L	uas	1 2 7	3,8 24,7 99,8 71,3	04 39 88 85	35.4% OJ	tuntas F 190,20 247,39 499,44 542,77	16.1% 000 900 140	OT OJ/1000 G 190. 1247. 1499.

6

Needed Basic Thematic GI Personnel

- 1. Primary Demand on Thematic GI Personnel:
 - Land cadaster & tax
 - Energy & Mineral Resources
 - Forestry & Agriculture
 - Fisheries & Marine
 - Construction
 - ~ estimated 10 persons in each government-level
- 2. Assumed

Governement: There are 34 Provinces, 520 Municipatilies,

 \rightarrow 10 + 10x34 + 10x520 = 5.550 personnel

Business World: 4 x Gov = 22.200 personnel

Needed Potential GI Personnel

- 1. Almost government activities could be optimized by utilization of Geospatial Information.
- 2. There are about 70 Ministries & Gov.-Agencies
- 3. Assumed
 - **5** persons in each of **70** gov.agencies = **350**
 - → 4 times in business world.
- 4. Potential GI will be growth according to the creativity of the actors.

Overview of National GIP Need

	Government	Business	Community	Academic			
Basic GI	200	800					
Primary TGI	5550	22.200	2000	700			
Potential TGI	350	1400		7.00			
GI-Infrastructure	200	800					
Jumlah	6300	25200	2000				
		34200					

- GI-Infrastructure: 10 in each of 20 GI-Clearance-Houses.
- Community: about 4 men in each of about 500 municipality
- Academic: ratio teacher:student ~ 1:10, to educate 4 students-years which regerate all needed GI Personnel with regeneration of 20 years.

Problems

- 1. Not all Univ-graduee will work in Geospatial World. Estimated only ~ 50% !!!
- 2. The distribution of personnel field & qualifiaction is still not yet mapped.
- 3. The spatial distribution of GI personnel is also not yet mapped. Some GI personnels work outside the country.

Demand according Business World

Need of surveyors / mapper (non univ-graduee)

- 1. Palm farm 8 jt ha: 5000 persons
- 2. Rubber farm 10000
 - → Expansion for the next 10 year, now 1500 ha/person
 - → If setup finished, maintainance 8000 ha/person
 - → Geodesy 80% (BSc 15%, non unigrad 65%)
 Geography/Tematic 20% (BSc 12%, non unigrad 8%)
- 3. In mining industry 5000 persons
- 4. In construction & engineering 2000 persons
- 5. In geospatial product reseller / consultant 1000 persons
- 6. Others branch: 3000 persons.

TOTAL > 26000

Education Output

- Production till today:
 4 univ with Geography == 400 B.Sc. & ~ 100 diplome
 10 univ with Geodesy === 500 B.Eng. & ~ 200 diplome
- Production of High School for Geomatics / Surveying ~ about 800 graduee

3.	GAPS?	Needs / year	available / year
	Geodetics B.Eng.	320	500
	Geodetics Diplome	320	200
	Geomatics schools	960	800
	Geographic B.Sc.	160	400
	Geographic Diplon	ne 240	100

CONCLUSION

Indonesia needs roughly about 35.000-50.000 Geospatial Information personnel (GIP). Available now is about 10%.

When steped in 20 years, the production of the academic world seem to fulfill the demand, but the problems are

- 1. type of competency (surveying, photogrammetry, remotesensing, hydrography, GIS, cartography, geo-IT),
- level of competency (some B.Eng will do the job of high school / non unigrad level); and
- 3. spatial distribution
- 4. broader market (ASEAN Economic Community)