

Weights estimation

An objective estimation of the errors $e_{X_{i}} e_{Y_{i}} e_{Z_{i}}$ a preliminary least square equal weight adjustment could be applied according to either the method of indirect observations or the method of condition equations

- indirect observations, equal weight adjustment

$$
\Delta \mathrm{X}_{\mathrm{ij}}=\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\mathrm{i}}
$$

$\Delta Y_{i j}=Y_{j}-Y_{i}$
$\Delta \mathrm{Z}_{\mathrm{ij}}=\mathrm{Z}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{i}}$

- The number of equations of each system is equal to the measured baselines.

The condition equations are formed by network's loops closure by using the measured $\Delta \mathrm{X}_{\mathrm{ij}}, \Delta \mathrm{Y}_{\mathrm{ij}}, \Delta \mathrm{Z}_{\mathrm{ij}}$ as follows $\Delta \mathrm{X}_{\mathrm{ij}}+\Delta \mathrm{X}_{\mathrm{jk}}+\Delta \mathrm{X}_{\mathrm{ki}}=0 \quad \Delta \mathrm{Y}_{\mathrm{ij}}+\Delta \mathrm{Y}_{\mathrm{jk}}+\Delta \mathrm{Y}_{\mathrm{ki}}=0 \quad \Delta \mathrm{Z}_{\mathrm{ij}}+\Delta \mathrm{Z}_{\mathrm{jk}}+\Delta \mathrm{Z}_{\mathrm{ki}}=0$
$>$ The number of equations in every system is equal to the number of the unary loops

The objective errors of the unknown components $e_{X_{i}} e_{Y_{i}} e_{Z_{i}}$ for each point i of the network is presented by the root of the variance for each one in VCV matrices.

Weights estimation

- The misclosure of the unary loops of the network (mc) is the error, which the loop contains for three participating baselines. So a decent estimation of this error for each component $\Delta X, \Delta Y, \Delta Z$ is given by the following equation
- Then the mean errors of the baselines' components determination are calculated as follows.
- L is the number of the loops

$$
e_{\Delta x_{\mathrm{E}}}= \pm \frac{\sum_{i=1}^{L}\left|e_{\Delta x_{0}}\right|}{L}
$$

$$
e_{\Delta \gamma_{\mathrm{m}}}= \pm \frac{\sum_{i=1}^{\mathrm{L}}\left|\mathrm{e}_{\Delta x_{\mathrm{i}}}\right|}{\mathrm{L}} \mathrm{e}_{\Delta z_{\mathrm{m}}}= \pm \frac{\sum_{\mathrm{t=}}^{\mathrm{L}}\left|e_{\Delta z_{z}}\right|}{\mathrm{L}}
$$

- Considering that for each baseline i, j the following equations are valid
-Assuming that ${ }_{\mathrm{X}_{\mathrm{X}_{1}}}=\mathrm{e}_{\mathrm{X}_{\mathrm{j}}} \mathrm{e}_{\mathrm{Y}_{\mathrm{V}_{\mathrm{i}}}}=\mathrm{e}_{\mathrm{Y}_{\mathrm{V}_{\mathrm{j}}}} \mathrm{e}_{\mathrm{Z}_{\mathrm{i}}}=\mathrm{e}_{\mathrm{Z}_{\mathrm{j}}}$
then

Absolute displacements calculation

According to the indirect observations method the following system of regular equations is formed $\Delta \mathrm{X}_{\mathrm{ij}}=\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\mathrm{i}} \quad \Delta \mathrm{Y}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{j}}-\mathrm{Y}_{\mathrm{i}} \quad \Delta \mathrm{Z}_{\mathrm{ij}}=\mathrm{Z}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{i}}$

$$
\widehat{\mathrm{X}}=\left(\mathrm{A}^{\mathrm{T}} \cdot \mathrm{P} \cdot \mathrm{~A}\right)^{-1} \cdot \mathrm{~A}^{\hat{\mathrm{O}}} \cdot \mathrm{P} \cdot \mathrm{a} l=\mathrm{N}^{-1} \cdot \mathrm{~A}^{\hat{\mathrm{O}}} \cdot \mathrm{P} \cdot \mathrm{a} l
$$

- The absolute position changes of network's points n between two sequential measurement campaigns (I and II) are calculated

- The variances and covariances of the changes $V_{\delta X, Y, Z}=V_{X, Y, Z}^{I}+V_{X, Y, Z}^{I I}$
- The changes äX ${ }^{\text {IIII }}$, ä ${ }^{1, I I I}$, ${ }^{\text {an }}{ }^{\text {IIII }}$ of each point i must be converted in an oriented local plane projection, $\delta E^{2} t_{i}, \delta \mathrm{North}_{\mathrm{i}}$ and $\delta \mathrm{Up}_{\mathrm{i}}$ in order to be more perceptible and to define their directions and their trends in relation to the earth's surface

Absolute displacements calculation

- the total rotation matrix $\mathrm{S}_{\mathrm{ALL}}$ for the ($\mathrm{n}-1$) unknown points of the network

 of propagation errors by using the appropriate J matrix as

$$
\mathrm{V}_{\delta \mathrm{E}, \mathrm{~N}, \mathrm{UP}}=\mathrm{J} \cdot \mathrm{~V}_{\delta X, Y, Z} \cdot \mathbf{J}^{\mathrm{T}}
$$

- J matrix is formed by the partial derivation of the previous equation
- $\mathrm{J}=\mathrm{S}_{\mathrm{ALL}}$

Absolute displacements calculation

- Continuously the change vector är $_{i}^{\text {III }}$ and its bearing $b_{i}^{\text {IIII }}$, in regard to north,

$$
\ddot{\mathrm{ar}}_{\mathrm{i}}^{\mathrm{I}, \mathrm{II}}=\sqrt{\left(\delta \mathrm{E}_{\mathrm{i}}^{\mathrm{III}}\right)^{2}+\left(\delta \mathrm{N}_{\mathrm{i}}^{\mathrm{IIII}}\right)^{2}} \quad \mathrm{~b}_{\mathrm{i}}^{\mathrm{IIII}}=\arctan \frac{\delta \mathrm{E}_{i}^{\mathrm{IIII}}}{\delta \mathrm{~N}_{\mathrm{i}}^{\mathrm{IIII}}}
$$

- The horizontal displacements could be checked by applying
- at a glance general one-dimension check

- the full check procedure the absolute error ellipse is drawn for each point i for a specific confidence level and the displacement vector of each point is over designed
- the vertical displacements detection
if $\quad \delta \mathrm{Up}_{i}^{1, \mathrm{II}}<\sigma_{\delta \mathrm{\delta Up}^{\text {L. }}} \cdot \mathrm{z} \quad$ then is no vertical displacement of the point i , otherwise point i has a vertical displacement for the selected confidence level.
a total approach of the absolute displacement's check could be done by the calculation of the error ellipsoid's axes for each point

Relative displacements calculation

- In order to calculate the relative displacements between two
 ÄäUp $p_{i, j \in \text { éé }}^{\text {ÉE }}$ between two sequential measurement campaigns I and II are calculated by using the equations
- Same checks

Conclusions

- The lack of the full CV matrix as output
- the overestimated standard errors of the baselines solution as well as
- the "black box" followed procedure, are the main disadvantages of the majority commercial GNSS softwares when used in the 3D monitoring.
In the advantages of the proposed processing methodology are registered
* the linear equations, which are formed, release the procedure from approximations. The entire procedure can be carried out in an easy Excel or Matlab environment as simple equations systems are solved thus no special software development is required.

Conclusions
* The weight definition proposed technique avoids the
unrealistically optimistic standard errors calculation due
to the GNSS ability to collect plethora of data.
* Thereby, it ensures the reliability of the adjustment as it
illustrates the objective achieved standard errors in
the original captured data.
※ The use of specific rotation matrix for each point in
order to calculate either the absolute and relative
displacements according to the law of propagation's
error ensure the correctness of the results
* The full CV matrix formation allows the accurate error
ellipse or error ellipsoid calculation, the right
evaluation of the displacements.

Conclusions

* The comparison of the size and the rotation of the error ellipses which are formed by using the full CV matrix or the deficient one prove that there is a strong possibility to extract different conclusions for a point's displacement as mainly the ellipse's orientation is completely different.
* The proposed processing methodology allows
\checkmark the total surveillance of the adjustment's steps,
\checkmark the objective weights definition and
\checkmark the full CV matrix formation.
it is evaluated as efficient and reliable for such a trustable and serious activity as the 3D monitoring by using GNSS receivers.

