LONG-TERM GEODETIC DISPLACEMENTS.
EVALUATING THE QUALITY OF MEASURED DISPLACEMENTS

Maria J. HENRIQUES
Sérgio OLIVEIRA
José N. LIMA

Portugal
Vertical displacements measured by surveying methods

Embankment dam

Pavilion

Glulam (glued laminated timber) arch

Effect of the humidity
When the structure has a normal behaviour why not use this information to analyse the displacements of a structure and to predict values of displacements.
Paper summary

• 1. INTRODUCTION
• 2. LONG-TERM GEODETIC DISPLACEMENTS
• 3. REGRESSION MODEL
• 4. EVALUATING DISPLACEMENTS
• 5. LOADS ON THE STRUCTURE
• 6. REGRESSION MODELS APPLIED TO CIVIL ENGINEERING STRUCTURES
• 7. CONCLUSIONS
Regression model

is used to establish the relation between the variables measured and loads on the structure:

\[y = a_0 + a_1 f(x_1) + a_2 f(x_2) + \ldots + a_k f(x_k) \]

\[Y = A B \]

y: variable measured (displacement component, inclination, etc.).

x: loads on the structure (temperature, reservoir water level, age, etc).

a0, ..., ak: the coefficients (the unknowns)

Paper summary

- 1. INTRODUCTION
- 2. LONG-TERM GEODETIC DISPLACEMENTS
- 3. REGRESSION MODEL
- 4. EVALUATING DISPLACEMENTS
- 5. LOADS ON THE STRUCTURE
- 6. REGRESSION MODELS APPLIED TO CIVIL ENGINEERING STRUCTURES
- 7. CONCLUSIONS
Loads on the structure

1. Annual Periodic Changes

\[a_k \sin \frac{2\pi t'}{365.25} + a_j \cos \frac{2\pi t'}{365.25} \]

2. Daily Periodic Changes

\[a_k \sin \frac{2\pi t'}{24} + a_j \cos \frac{2\pi t'}{24} \]

\[y = a_0 + a_1 f(x_1) + a_2 f(x_2) + \ldots + a_k f(x_k) \]

Example of a daily change of inclination in radial direction

\[i(h, t) = a_0 + b_1 \cos \frac{2\pi t}{24} + b_2 \sin \frac{2\pi t}{24} + b_3 \cos \frac{2\pi t}{12} + b_4 \sin \frac{2\pi t}{12} + c \]
Loads on the structure

3. Water Level in Reservoirs

\[a_k h^n \]

4. Time effects

\[a_k \frac{1}{(t-t_0)^n} \quad \text{or} \quad a_k \ln \left(1 + \frac{t-t_0}{a}\right) \]

\[y = a_0 + a_1 f(x_1) + a_2 f(x_2) + ... + a_k f(x_k) \]

Paper summary

- 1. INTRODUCTION
- 2. LONG-TERM GEODETIC DISPLACEMENTS
- 3. REGRESSION MODEL
- 4. EVALUATING DISPLACEMENTS
- 5. LOADS ON THE STRUCTURE
- 6. REGRESSION MODELS APPLIED TO CIVIL ENGINEERING STRUCTURES
- 7. CONCLUSIONS
Concrete dam

Vilarinho das Furnas

Radial displacements
Radial Displacements Modeled

\[y = a_0 + a_1 \cos \left(\frac{2\pi t}{565.25} \right) + a_2 \sin \left(\frac{2\pi t}{365.25} \right) + a_3 h + a_4 h^2 + a_5 \ln \left(1 + \frac{t-t_0}{\alpha} \right) \]

Water level in the reservoir
Using Excel

Radial Displacements Modeled

\[y = a_0 + a_1 \cos \left(\frac{2\pi t}{365.25} \right) + a_2 \sin \left(\frac{2\pi t}{365.25} \right) + a_3 h + a_4 h^n + a_5 \ln \left(\frac{1 + k t_0}{\alpha} \right) \]
Pavillion: Vertical displacements

Periodic and aging effect
Paper summary

• 1. INTRODUCTION
• 2. LONG-TERM GEODE蒂C DISPLACEMENTS
• 3. REGRESSION MODEL
• 4. EVALUATING DISPLACEMENTS
• 5. LOADS ON THE STRUCTURE
• 6. REGRESSION MODELS APPLIED TO CIVIL ENGINEERING STRUCTURES
• 7. CONCLUSIONS

Conclusion

It was presented a simple method to build statistical/empirical models using functions of a well known spreadsheet application (Excel). The regression model used, that can be applied to analyse displacements, establishes linear relations between loads, time effects and structural response.

Excel macros developed to compute the statistical model coefficients are available.