FINANCIAL AND ESTIMATING INDICATORS FOR ASSESSMENT OF MORTGAGE LENDING VALUE

"The mortgage lending value is defined as the value of the property as determined by a prudent assessment of the future marketability of the property taking into account long term sustainable aspects of the property, the normal and local market conditions, and the current use and alternative appropriate uses of the property. Speculative elements shall not be taken into account in the assessment of the mortgage lending value. The mortgage lending value shall be documented in a clear and transparent manner".

- Prudent assessment of its future marketability;
- Speculative elements;
- Assumptions;
- Percentage deduction from market value;
- Mortgage assessment.

\[DCR = \frac{R}{Q} \]

where:
- \(R \) = net annual income (euro/year);
- \(Q \) = annual repayment instalment (euro/year).

\[LTV = \frac{M}{V} \]

where:
- \(M \) = mortgage (euro);
- \(V \) = value (euro).
\[S = \frac{R}{V} = DCR \cdot LTV \cdot \frac{r}{1 - (1 + r)^{-m}}. \]

\[V = R \cdot \frac{1 - \left(\frac{1 + l}{1 + s_f} \right)^n}{s_f - l} + \frac{R_{n}}{s_n} \cdot \left(1 + s_f \right)^n \]

where:
- \(R \) net income of the first year of the property to be assessed (euros/year);
- \(l \) annual rate of variation of the net income;
- \(s_f \) capitalisation rate in the financial capitalisation method;
- \(R_n \) net income of the last year of the property to be assessed (euros/year);
- \(s_n \) final capitalisation rate (going out rate);
- \(n \) duration of the period of availability (years).
\[V_n = \frac{R_n}{s_n} \]

where:
- \(V_n \) final resale value (euros);
- \(R_n \) net income of the last year of the property to be assessed (euros/year);
- \(s_n \) final capitalisation rate (going out rate);

\[s_n = s \cdot \left(\frac{1 + l}{1 + d} \right)^n \]

where:
- \(s \) capitalisation rate
- \(s_n \) final capitalisation rate (going out rate);
- \(l \) annual rate of variation of the net income
- \(d \) annual rate of variation

\[s = \frac{R}{V} = \frac{DCR}{LTV} \cdot \frac{r}{1 - (1 + r)^{-m}} \]

\[S_f = S \pm d \]

\[s_n = s \left(\frac{1 + l}{1 + d} \right)^n \]
... thanks you for your attention!

Geom. Antonio Benvenuti MRICS
064203161 – 335 7859993
a.benvenuti@geoweb.it