Action Research for a New

 E-Learning GPS/Surveying PlatformKefei ZHANG Erjiang FU Gang-Jun LIU Stuart WHITMAN Ming ZHU

gang-jun.liu@rmit.edu.au
School of Mathematical and Geospatial Sciences

ark	geospaualstiance	R RMIT
	Outline	
	The Project - Team, Background, Focus Programs and Courses Geospatial Education at RMIT - Framework, Challenges, Opportunities An e-Learning Platform - Mind Map, Wiki Online Platform, Multimedia Tools A Case Study - Methodology, Outcome Conclusions Demo	

FIG Congress 2010
Facing the Challenges - Building the Capacity
Sydney, Australia, 11-16 April 2010

Geospatial Science and Technology

e.g. Rapid developments of GNSS

\checkmark From the first satellite launched in 1978 to today's reliable cm-level positioning world wide
\checkmark Many new GNSS systems under development

- e.g. European GALILEO, Chinese Compass/Beidou, Japanese QZSS and Indian systems
$\sqrt{ }$ Wide applications
- space objects tracking, precision farming, sports, recreational and intelligent transportation

US $\$ 22$ billion in 2006
$\sqrt{260,000,000}$ search results in Google for GPS/GNSS
 US\$75 billion in 2017

With such rapid developments of the GNSS technology and applications, how Geospatial Education at RMIT can meet the rapidly evolving needs of both the geospatial industry and the learner community?

The geospatial industry needs
$\sqrt{ }$ to be kept abreast of the latest developments in the "enabling"
geospatial technologies, including GNSS
$\sqrt{\text { a platform for engaging (and interacting) with university }}$academics for vocational and professional development, and R\&I activities $\sqrt{ }$ an authority and standardised knowledge base for $\quad-$ the sustainable developments of the industry, including $\quad-$ e.g. surveyors' on-going training

	geospalalisclence	
	$-5 x_{2}$	
HTradikionnthasssiesismiment deplevifeed horaing íhaforms that Geospariat science are have flexibility (to meet varied learners' needs and interests) and - infbrittconternoforersededeltan student-centred - provide global, $24 / 7$, and flexible access to contents, resources, tasks - limitedebyatwo idinmemsionalomediac(fidions / scenarios scenarios p -based) - Engage students in active learning, higher order thinking and problem - lelkiskflexible (e.g. one-size-fit-all in terms of - encourage particicatition, interaction, sharing and collabaration - contents. contextascones tume praditace = Hardergnitkehtiffyinimeliwichual's strength and - enhance learning experience and outcome weakness		
(13/26)		

Problem-based Assessment and Feedback	
Our approaches	
\checkmark To work with colleagues, students, industry and government	
agencies	
\checkmark To identify a range of geospatial industry-focused situations	
and contexts for the applications	
\checkmark To design a bank of simulations and cases (i.e. problem-based	
learning questions / tasks / activities) based on industry and	
professional practitioners' inputs	
\checkmark To develop and implement these cases by using web and	
multimedia technologies	
\checkmark	To incorporate these cases into formative and authentic
assessment processes	

\checkmark The advantages of e-learning platforms have been recognized
widely and more and more such platforms are playing critical
roles in higher / professional education, e.g.
- To improve the representation of multidimensional,
\quaddynamic, and complex scientific concepts and real world cases for learning and assessment - To overcome the limitations in using static 2D media for more effective and efficient representation of dynamic 3D geospatial concepts, processes, and real world situations / scenarios
$\sqrt{\text { Inputs from geospatial industries and students need to be }}$considered and integrated into the learning, assessment and feedback processes

