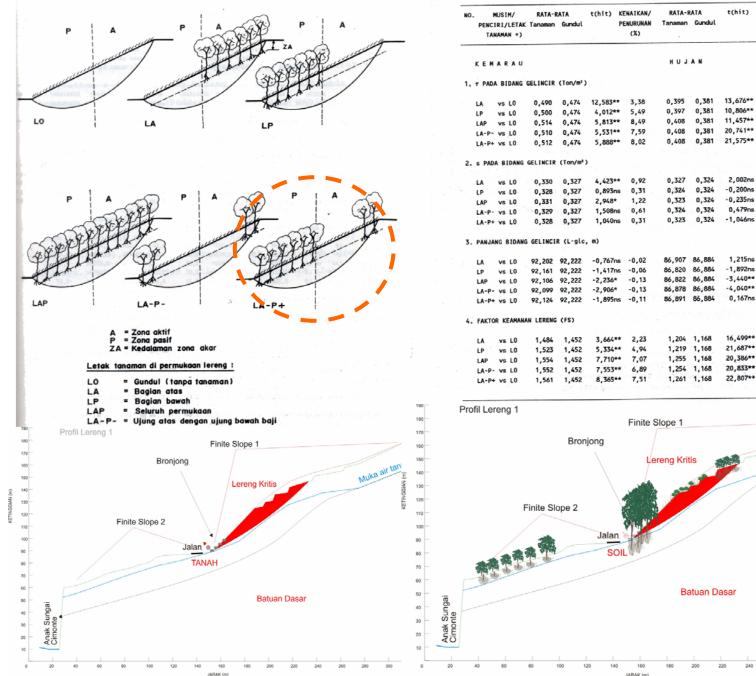


water content (%)

SLOPE INSTABILITY ZONING MAPPING FOR THE STABILIZATION SYSTEM (3991)

Water content -	- internal frictior	angle relationship
24,0	ditto, the same s	soil mass

	Internal friction angle (°)		= in rainy sea = in dry seasc	son on	x x H x x H x X H x H x H X H X H X H X H X H	923–0,4551 w 0,6559 w	
	1	25,0	30,0 35	water conte	45,0 50,0 ent (%) -	55,0 60, →₩	0
Earth- quake coeff.	Angle of slope (°)	Vege- tation	Depth of slip sur- face (m)	Length of slip sur- face (m)	Shear strength (Ton)	Shear force (Ton)	Safety factor/stability
0.00	14.26	No	47.00	450.224	1.387	1.334	1.039/unstable
0.05	14.26	No	27.50	443.006	1.216	1.071	1.136/critical
0.05	14.26	Yes	27.50	443.047	1.216	1.069	1.139/critical
0.10	14.26	No	19.50	439.743	1.079	0.922	1.171/critical
0.00	12.26	No	47.00	452.917	1.379	1.247	1.106/critical
0.05	12.26	Yes	27.50	444.411	1.195	0.978	1.222/critical
0.05	12.26	Yes*)	27.50	444.403	1.197	0.978	1,224/critical
0.10	12.26	Yes	19.50	440.663	1.052	0.824	1.276/stable •
0.05	11.26	Yes*)	27.50	445.042	1.184	0.932	<u>1.271/stable</u>
0.10	11.26	Yes*)	19.50	441.051	1.039	0.777	1.338/stable
0.05	10.26	Yes	27.50	445.661	1.168	0.886	<u>1.319/stable</u>
0.10	10.26	Yes	19.50	441.429	1.020	0.729 •	<u>1.399/stable</u>


01	and the second second		and the second
Slope	stability	/ affected b	by vegetation

		4 /0/	1,452	Dry Se	2,23	1,204	1,168	16,499**	3,00
LA	vs LO	1,484		5,334**	4,94	1,219	1,168	21,687**	4,31
LP	vs L0 vs L0	1,523	1,452	7,710**	7,07	1,255	1,168	20,386**	7,28
LAP	vs L0	1,552	1,452	7,553**	6,89	1,254	1,168	20,833**	7,36
	vs L0	1,561	1,452	8,365**	7,51	1,261	1,168	22,807**	7,96
NO	TE :			4					
	mificant	at α = 0.0	1						
**) si	gnincant								

*) double vegetation density

21,0

Result of simulation of the effects of α_{hor} , i, and W_{veg} on FS

0,95 0,327 0,324 2,002ns 0,324 0,324 -0,200ns -0,06 0,323 0,324 -0,235ns -0,17 0,14 0,324 0,324 0,479ns 0,323 0,324 -1,046ns -0,37 86,907 86,884 1,215ns -0,03 -0,07 86,820 86,884 -1,892ns 86,822 86,884 -3,440** -0,07 -4,040** -0,01 86,878 86,884 86,891 86,884 0,167ns -0,01

t(hit) KENAIKAN/ KETERANGAN

DK = 14 t(0,05) =

2,145

2,977

t(0,01) =

PENURUNAN

(%)

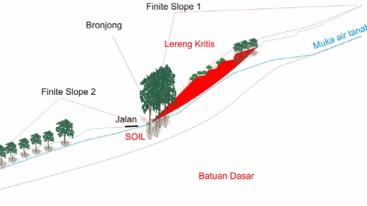
3,67

4,20

7,09

7,09

7,09


13,676**

10,806**

11,457**

20,741**

LA	vs	LO	1,484	1,452	3,664**	2,23	1,204	1,168	16,499**	3,00
LP	vs	LO	1,523	1,452	5,334**	4,94	1,219	1,168	21,687**	4,31
LAP	vs	LO	1,554	1,452	7,710**	7,07	1,255	1,168	20,386**	7,28
LA-P-	vs	LO	1,552	1,452	7,553**	6,89	1,254	1,168	20,833**	7,36
			1,561	1,452	8.365**	7.51	1,261	1,168	22,807**	7,96
	LP LAP LA-P-	LP vs LAP vs LA-P- vs	LP vs L0	LP vs L0 1,523 LAP vs L0 1,554 LA-P- vs L0 1,552	LP vs L0 1,523 1,452 LAP vs L0 1,554 1,452 LA-P- vs L0 1,552 1,452	LP vs L0 1,523 1,452 5,334** LAP vs L0 1,554 1,452 7,710** LA-P- vs L0 1,552 1,452 7,553**	LP vs L0 1,523 1,452 5,334** 4,94 LAP vs L0 1,554 1,452 7,710** 7,07 LA-P- vs L0 1,552 1,452 7,553** 6,89	LP vs L0 1,523 1,452 5,334** 4,94 1,219 LAP vs L0 1,554 1,452 7,710** 7,07 1,255 LAP-vs L0 1,552 1,452 7,753** 6,89 1,254	LP vs L0 1,523 1,452 5,334** 4,94 1,219 1,168 LAP vs L0 1,554 1,452 7,710** 7,07 1,255 1,168 LAP-vs L0 1,552 1,452 7,710** 7,07 1,255 1,168 LA-P-vs L0 1,552 1,452 7,553** 6,89 1,254 1,168	LA vs. L0 1,524 1,452 5,534** 4,94 1,219 1,168 21,687** LAP vs. L0 1,554 1,452 7,710** 7,07 1,255 1,168 20,386** LAP-vs. L0 1,552 1,452 7,553** 6,89 1,254 1,168 20,386**

220

240

260 280 300 32

Discussion & Conclusion

- Effect of rain water on soils and slope stability : soil strength deceases with increasing soil water content → slope safety factor (F) decreases with increasing soil water content (w)
- Effect of vegetation on slope stability : slope safety factor (F) increases with both increasing weight of biomass on slope toe and decreasing biomass of slope summit
- Effect of eathquake loading on slope stability : slope safety factor (F) decreases with increasing earthquake coefficient (α_{hor})
- Simulation to stabilize critical slope stability \rightarrow conducted to stabilize slopes at earthquake loading condition at max α_{hor} and densest rainy season using slope geometry modification and vegetation planted at maximal weight on toe part of slope and minimal weight on summit of slope to achieve F \geq 1,25 (Long Term Deep Seated Stability) and F = 1 (Seismic or Pseudo-static Stability) as the design criteria.

THANK YOU VERY MUCH