THE EROSION MODEL BASED ON GRAI NSI ZE DISTRIBUTION RATIOS OF WEATHERING PRODUCT OF QUATERNARY VOLCANIC DEPOSITS ${ }^{1)}$
 Key words: erosion model, soil erodibility, Quaternary volcanic deposits

Emi Sukiyah ${ }^{2)}$, R. Febri Hirnawan ${ }^{2)}$, Dicky Muslim ${ }^{2)}$

1) FIG Congress 2010, Sydney, Australia, 11-16 April 2010
2) Faculty of Geological Sciences and Engineering, University of Padjadjaran, Bandung, I ndonesia

INTRODUCTION

The intensity of erosion \approx
f (rainfall erosivity, soil erodibility, morphology, \& land use)

Currently, the USLE applications cannot use for base assumptions, since the formula is no longer correct that causes wrong generalization

FIG Congress 2010
Facing the Challenges - Building the Capacity

The result of erosion calculation and their validation

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Demonstration } \\ \text { plot } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Erosion } \\ & \text { (tonyeas) } \end{aligned}$	USLE					USLEv			
		$\begin{gathered} \text { USLE } \\ \text { (Ionyear) } \end{gathered}$	$\triangle \mathrm{E}$	Propation $\text { d } \Delta E$	eror	k	$\begin{aligned} & \text { USLEv } \\ & \text { (Ionyear) } \end{aligned}$	$\triangle \mathrm{E}$	$\begin{gathered} \text { Propotion of } \\ \Delta \mathrm{E} \end{gathered}$	error
Upstream Cirasea	2867	35330	5653	0.19		0.84	27204	24.73	0.08	
Bargoug	81,84770	99.810 .63	17,965.90	0.2		0.82	76.854.19	4,99051	0.06	
Cicanguvang	10,296.10	12.870 .08	2.573.98	0.25		0.80	9.99956	33614	0.04	
Cirana	$216,421.92$	281,067.46	64.64554	0.30		0.71	216,421.94	0.02	0.00	
Sodatapa	68,37635	91,188.44	22.79209	0.33		0.75	70,19970	1.823 .35	0.03	
Wangisgazal	60580	931.88	326.18	0.54		0.65	717.62	111.82	0.18	
Ciramose	2851.14	5,001.99	2.15085	0.75		0.57	2.551 .01	300.13	0.11	
Maliming 2	8.12800	15,335.50	7.207 .90	089		0.53	7.881 .31	30669	0.04	
Maliming 1	7.881 .30	15,33590	7,54.60	0.96		0.51	7.821.31	0.01	0.00	
Gaugah1	7,970.82	16.267.01	8,266. 19	1.4		0.49	8.22618	325.36	0.04	
Galugat13	30565	87924	48359	1.22	0.61	0.45	48.41	5276	0.13	008

USLE modification

Where

$k^{\prime}=C . M S$ atis zensant 0. IS fer high platicity rit and 1.07 for tigh platicity clay
 RK. SCP $=$ sial

$$
\mathrm{E}_{\mathrm{v}}=\mathrm{k}[\mathrm{RKLSCP}]
$$

Where $K=$ erosion coefficient of USLE; 0.51 for high plasticity clay (CH) and 0.77 for high plasticity silt (MH).

The $\mathbf{k}_{\text {M-c-s }}$ correction for various land uses

Land use	CP	$\mathrm{k}_{\mathrm{M}-\mathrm{C} \text {-S }}$			
		CH	MH	ML	SM
Residential area	0.60	0.41	0.62	0.64	0.26
Mixture farming \& grove	0.30	0.20	0.31	0.32	0.13
Paddy field	0.05	0.03	0.05	0.05	0.02
Farming field	0.75	0.51	0.77	0.80	0.33
Plantation field	0.40	0.27	0.41	0.43	0.18
Forest	0.03	0.02	0.03	0.03	0.01

CONCLUSI ON

Residual soils originated from weathered Quaternary volcanic deposits in southern Bandung basin are highly plastic.

The result of validation of hypothesis using deterministic approach exhibits that ratio between fine-grained to coarsegrained soil fractions determines the soil erodibility.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Adjat Sudradjat, Prof. Emmy Suparka, Dr. IIdrem Syafri, Dr. Mega F. Rosana, and Dr. Lobo M. Balia for supporting this research. They also would like to thank Dr. Hendarmawan and Mr. Yuyun Yuniardi, MT on behalf of Faculty of Geological Sciences and Engineering, University of Padjadjaran, for financial support for the presentation of this paper.

