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SUMMARY  

 

The coming years will show a proliferation of Global and Regional Navigation Satellite 

Systems (GNSS). This promise of a broader multi-frequency, multi-constellation "system of 

systems" has the potential to enable a wide range of demanding applications for high-

accuracy users. For such applications, successful GNSS ambiguity resolution, which is the 

process of resolving the unknown cycle ambiguities of double-difference (DD) carrier-phase 

data as integers, is essential. The sole purpose of ambiguity resolution is to use the integer 

ambiguity constraints as a means of improving significantly on the precision of the remaining 

model parameters, such as baseline coordinates and/or atmospheric delays. Ambiguity 

resolution applies to a great variety of current and future GNSS models. These models differ 

greatly in complexity and diversity. They range from single-baseline models used for real-

time kinematic (RTK) positioning to multi-baseline models used as a tool for studying 

geodynamic phenomena. The increase in signals, frequencies and satellites has enormous 

potential for increasing the robustness of GNSS models.  

In this contribution we study and analyze the robustness of multi-frequency GNSS models for 

phase-only RTK processing. Our attention is restricted to the short baseline application, 

neglecting the influence of atmospheric errors, but it is stressed that the phase-only RTK 

model is also applicable for longer baselines. We use the ambiguity success-rate as our 

measure for phase only performance. Using experimental results we show that the phase-only 

RTK model is more robust in case of multipath than the traditional phase+code RTK model.   
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1. INTRODUCTION 

 

Global Navigation Satellite System (GNSS) ambiguity resolution is the process of resolving 

the unknown cycle ambiguities of double difference (DD) carrier phase data as integers. The 

sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of 

improving significantly on the precision of the remaining model parameters, such as baseline 

coordinates and/or atmospheric delays.  

Ambiguity resolution applies to a great variety of current and future GNSS models. These 

models may differ greatly in complexity and diversity. They range from single-baseline 

models used for kinematic positioning to multi-baseline models used as a tool for studying 

geodynamic phenomena. The models may or may not have the relative receiver-satellite 

geometry included. They may also be discriminated as to whether the slave receiver(s) are 

stationary or in motion. When in motion, one solves for one or more trajectories, since with 

the receiver-satellite geometry included, one will have new coordinate unknowns for each 

epoch. One may also discriminate between the models as to whether or not the differential 

atmospheric delays are included as unknowns. In the case of sufficiently short baselines they 

are usually excluded. Apart from the current Global Positioning System (GPS) models, carrier 

phase ambiguity resolution also applies to the future modernized GPS and the future 

European Galileo GNSS. An overview of GNSS models, together with their applications in 

surveying, navigation, geodesy and geophysics, can be found in textbooks such as [Parkinson 

and Spilker, 1996], [Strang and Borre, 1997], [Teunissen and Kleusberg, 1998], [Leick, 

2004], [Misra and Enge, 2006], [Hofmann-Wellenhof et al., 2008]. 

In this contribution we study and analyze the robustness of current and modernized GPS 

models for phase-only RTK processing (see table 1). The methodology developed is generally 

applicable and can therefore also be applied to other GNSSs. Short baselines without 

atmospheric delays are considered. The phase-only GPS model for short-baselines is full of 

rank providing a minimum of two epochs are used.  

 

 
Table 1: Modernized GPS signals 

 

We study the impact of the third GPS frequency, the number of satellites and the 

measurement precision on phase-only processing. We use the ambiguity success-rate as our 

measure for phase only performance. The potential advantage of using carrier phase-only data 

is that ambiguity resolution will be freed from any biasing effects that the code data may 

bring (e.g. code multipath). Using experimental results we show that the phase-only RTK 

model is more robust in case of multipath than the traditional phase+code RTK model.  
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2. INTEGER AMBIGUITY RESOLUTION 

 

2.1 The GNSS model 

In principle all GNSS models can be cast in the following frame of linear(ized) observation 

equations,  

 E( )    ,    D( )    ,    ,       n p

yyy Aa Bb y Q a Z b R= + = ∈ ∈  (1) 

where y is the given GNSS data vector of order m, a and b are the unknown parameter vectors 

respectively of order n and p, E and D are the expectation and dispersion operator, 

respectively, A and B are the given design matrices that link y to a and b, and where 
yy

Q  is the 

given variance matrix of y. The data vector y may consist of the ’observed minus computed’ 

single-, dual- or triple frequency double-difference (DD) phase and/or pseudorange (code) 

observations accumulated over all observation epochs. The entries of vector a are then the DD 

carrier phase ambiguities, expressed in units of cycles rather than range. They are known to be 

integers, n
a Z∈ . The entries of the vector b will consist of the remaining unknown 

parameters, such as for instance baseline components (coordinates) and possibly atmospheric 

delay parameters. They are known to be real- valued, p
b R∈ . 

When using the least-squares (LS) principle, the GNSS model can be solved by means of the 

minimization problem  

 2

,min    ,       ,    
yy

n p

a b Q
y Aa Bb a Z b R− − ∈ ∈� �  (2) 

with 2 1|| . || (.) (.)
yy

T

Q yy
Q−=  

The solution of this integer LS problem can be obtained in the following three steps,  
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In the first step one simply discards the integer constraints n
a Z∈  on the ambiguities and 

performs a standard LS adjustment. As a result one obtains the (real-valued) LS estimates â  

and b̂ , together with their variance matrix. The solution of this first step is referred to as the 

’float’ solution. In the second step the ’float’ ambiguity estimate â  is used to compute the 

corresponding integer LS ambiguity estimate a
(

. Once these integer ambiguities are computed, 

they are used in the third step to finally correct the ’float’ estimate of b, so as to obtain the 

’fixed’ estimateb
(

.  

The above integer LS solution can be computed efficiently with the popular LAMBDA 

(Least-squares AMBiguity Decorrelation Adjustment) method, see e.g. [Teunissen, 1995], [de 

Jonge and Tiberius, 1996]. 

 

2.2 The ambiguity success-rate 
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In order to evaluate the expected performance of ambiguity resolution, we need the 

probability mass function (PMF) of the estimated ambiguities a
(

. If we denote the probability 

density function (PDF) of â  as ˆ ( )
a

p x , the PMF of a
(

 follows as  

 ˆ( ) ( )    ,    
z

n

a
S

P z p xa dx z Z= = ∈∫
(

 (4) 

with the regions of integration given as 
ˆ ˆ ˆ ˆ

2 2{ , }
aa aa

n n

z Q QS x R x z x u u Z= ∈ − ≤ − ∀ ∈� � � �∣  and the 

PDF - in case of Gaussian distributed data - given as  
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Q π

= − −� �  (5) 

The probability of correct integer ambiguity estimation, ( )P a a=
(

, is of particular interest. It 

describes the expected success-rate of GNSS ambiguity resolution. Different ways of 

evaluating the least-squares success-rate have been given in [Teunissen, 1998]. In the present 

contribution we make use of the very easy-to-compute lower bound  

 
1  

1
( ) 2 ( ) 1

2

n

i i I

P a a
σ=

 
= ≥ Φ − 
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with  

 21 1
( ) exp{ }

22

x

x v dv
π−∞

Φ = −∫  

and where the 
 i I

σ , i=1,…,n, denote the sequential conditional standard deviations of the 

decorrelated ambiguities. This lower bound was introduced in [Teunissen, 1999] and it is 

presently the sharpest lower bound available for (6), see e.g. [Thomson, 2000], [Verhagen, 

2003].  

 

3. SHORT BASELINE PHASE-ONLY AMBIGUITY RESOLUTION 

 

3.1 The short baseline phase-only GPS model 

In this section we present the expected performance of phase-only ambiguity resolution for 

short baselines, using different measurement scenarios. In case of sufficiently short baselines, 

the unknown ionospheric and tropospheric delays may be assumed absent. The short-baseline, 

phase+code, multiple frequency model reads,  

 
(

( ) ( )

( ))
j j j

j

i

p i G i b

ia G bφ λ

=

= +
 (7) 

with ( )
j

p i  and ( )
j

iφ , (j=1,2,3), respectively the vector of DD code observations and the 

vector of DD carrier phase data on frequency 
j

f . 
j

a  denotes the unknown time invariant  
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Figure 1: Skyplot for selected time span 

 

vector of the integer ambiguities of frequency 
j

f  and b the vector of unknown stationary 

baseline components. The matrix G(i) captures the relative receiver-satellite geometry at 

epoch i, 
j

λ  for j=1,2,3 denote the known wavelengths of GPS.  

The phase-only model lacks the code observations ( )
j

p i :  

 (( ) )
j j j

i a G i bφ λ= +  (8) 

The model is of full-rank from the outset, provided at least two epochs of data are used. 

Hence, no special precautions have to be taken to eliminate rank defects.  

For the standard deviation of observations used in our computations we use an elevation 

dependent weighting model, which reads, 

 (1 10exp{  )
10

 }
i i

s
s

φ φσ σ
°

= + −
ò

 (9) 

where the elevation dependency is described by the ratio i

i

s

φ

φ

σ

σ
 and sò  the elevation of satellite 

s in degrees. 

 

3.2 Short baseline phase-only success-rates 

In the following sections we will look at the dependency of the phase-only GPS-model on the 

number of frequencies, the number of satellites, the measurement precision and the time 

interval between measurement epochs. The ambiguity success-rate will be our measure for the 

performance of the phase-only GPS-model in different scenarios. The ambiguity success-rate 

will be computed using the lower-bound given in (6). From (6) it is clear that the sucess-rates 

depend on the variance-covariance matrix of the decorrelated ambiguities. For a known 

position and satellite constellation we can perform design computations, without observations, 

to obtain the expected variance covariance matrix of the decorrelated ambiguities, therefore 

the expected lower bound for the ambiguity success-rates can be computed without 

observations. 

In the design computations it is assumed that the phase ambiguities remain constant during 

the complete time span, in this case we can take full advantage of the changing satellite- 
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receiver geometry. The computations have been performed for a location in Perth, Western 

Australia, for a dual-epoch observation. The chosen start time for the computations is the first 

epoch of the experimental data set used in section 3.3. Figure 1 shows a skyplot of the visible 

satellites above 10 degrees elevation during the time span with this constellation. 

 

3.2.1 Single frequency, Dual frequency and Triple frequency 

In this section the influence of the number of satellites and the number of frequencies on the 

success-rates is investigated. The constellation in figure 1 shows 8 satellites, for the 

computations with less satellites each time the satellite at the lowest elevation has been 

removed, so for example in the computations with 6 satellites, satellites with PRN 23 and 31 

were removed from the design scenario. Table 2 shows the success-rates for the different 

scenarios. 

 

 
Table 2: The phase-only dual-epoch success-rate for different frequencies with 1 second time interval 

and 
iφσ = 1 mm 

 

The table shows that, as can be expected, the more satellites and the more frequencies used 

the better the success-rates. From the first row it is clear that single-frequency phase-only 

successful ambiguity resolution is unlikely for short time spans. The success-rate of dual-

frequency and triple-frequency are close to one from 6 satellites tracked. The L1/L5 linear 

combination, which is interesting from a GPS/Galileo combined perspective as Galileo will 

also broadcast signals on these frequencies, is always outperforming the L1/L2 dual frequency 

scenario for this constellation. 

 

3.2.2 Measurement precision 

The measurement precision has an influence on the success-rates, because it directly 

influences the precision of the estimated float ambiguities. The value chosen for the 

coefficient 
iφσ  in the elevation dependent weighting model of (9) in the previous section is 1 

millimeter for all phase observations. The influence of this coefficient on the a-priori standard 

deviation of the observables versus elevation is shown in figure 2 and the influence on the 

success-rates is shown in table 3.  

 

 
Table 3: The phase-only dual-epoch success-rate for different measurement precision dual-frequency 

(L1/L2) observations with 1 second time interval 
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Figure 2: Elevation dependent weighting function for different values of coefficient 

iφσ  

 

The influence of the measurement precision is evident from table 3. It shows the sensitivity of 

the design computations for not only the number of satellites but also the chosen measurement 

precision. The measurement precision of currently available GPS-RTK equipment is close to 

or better than 1 millimeter. For example the Sokkia equipment used in the experiment in 

section 3.3 has a specified measurement precision of 0.5 mm for L1 and 1 mm for L2.  

A value for the standard deviation of 1 mm in zenith direction when an elevation dependent 

weighting model is used is also recommended in scientific software such as the Bernese GPS 

software [Dach et al., 2007]. The results show that dual-epoch phase-only ambiguity 

resolution should therefore be possible with current surveying grade receivers and 7 satellites 

in view. 

 

3.2.3  Time interval 

Although with 6 or more satellites and a state of the art measurement precision the dual-

frequency, dual-epoch phase-only success-rates are close to one for a time interval of 1 

second, a larger time interval means that the satellite-receiver geometry has changed more, 

which will make the phase-only model stronger. Figure 3 shows the influence of larger time 

spans for the single frequency success-rates. The figure shows two lines, one line where all 

available data, with a time span of 1 second, is used and one line where the first and last 

epoch, so only two epochs, of the time interval are used for the computation of the success-

rates. It is clear from figure 3 that it is not only the redundancy that makes single frequency 

phase-only ambiguity resolution possible, but also the change in geometry has a strong effect 

in improving the success-rates. We are only investigating (modernized) GPS at the moment, 

but it can be expected that more satellite systems will also have a large impact on the single 

frequency phase-only ambiguity resolution as this will have an impact on both the geometry 

and the redundancy. 

 

3.3 Phase-only fixed baselines in case of multipath 

In the previous section we have shown that dual-epoch phase-only ambiguity resolution is 

possible. In this section we will show the effect of multipath on dual epoch ambiguity 

resolution and the baseline coordinates in the phase-only and the traditional phase and code 
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Figure 3: Phase-only success-rates using all epochs (top) and using only the first and last epoch 

(bottom) versus time interval, 
iφσ = 1 mm 

 

GPS-model. The data used in this section is that of a 100 meter baseline and was collected 

using Sokkia GSR2700ISX receivers. Figure 4 shows the satellite constellation for the 

selected measurement interval of 2000 seconds.  

 
Figure 4: Skyplot for the experimental dataset 

 

Compared to the scenario of the design computations in section 3.2 there is one satellite less 

(PRN14), which gives 7 satellites that were continuously tracked by both receivers. 

 

3.3.1 Multipath simulation 

Since the data was collected in a multipath free environment multipath has to be simulated on 

the observables. In the following sections it is assumed that there is a vertical reflecting 

surface present that reflects the satellite signals. Figure 5 gives a geometric interpretation of a 

vertical reflecting surface. 
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Figure 5: The length of the direct path and the delayed in case of a vertical reflector 

 

There is a direct signal SR from satellite S to receiver R and a reflected signal SP−PR, where 

P is the point of incidence. The length of the reflected path can easily be computed as S'R 

where S' is the image of S in the coordinate system with its origin in the lower left corner of 

the plane.  

The model used for the multipath simulation takes both code and phase multipath into 

account. The code multipath simulation assumes so-called narrow-sampling and no fractional 

phase shift as described in [Byun et al., 2002], [Leick, 2004], [Joosten and Irsigler, 2003]. 

The following expressions are used for the multipath simulations of the code multipath error 

∆τ
C
 and the phase multipath error ∆τ

φ
: 
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with α the attenuation of the reflected signal path, θ(i) the multipath phase shift at epoch i, T
C
 

the chip length of the code signal in seconds, I the sampling interval of the correlator, τ(i) the 

time delay of the reflected signal, and A(i) the code correlation function. The code correlation 

function is sufficiently approximated [Parkinson and Spilker, 1996] by: 

 
( )

( ) 1
C

i
A i

T

τ∆
= −  (11) 

The multipath phase shift θ(i) is obtained as follows:  

 
2

( ) ( ) 2 ( )j

j

i PD i f i
π

θ π τ
λ

= = ∆  (12) 

With PD(i) the path delay that can be obtained, see figure 5, by: 

 PD = S'R - SR  (13) 

 

3.3.2 Multipath scenario 

In the simulations for our measurement scenario we have assumed a vertical reflector at an 

azimuth of 1.45π with was placed at respectively a distance d of 1 meter, 30 meter and 50 

meter. Three values for the attenuation were simulated from very strong reflection (α=0.9), to 

moderate (α=0.5) to weak reflections (α=0.1), Byun et al. [2002] and Leick [2004] used 

α=0.1 in their contributions. For the C\A code a chip length of 977 ns was used, with a 

sampling interval of 49 ns. The P2 code chip length was set at 98 ns and a sampling interval 

has been chosen of 65 ns. Figure 6 show the length of the delayed path for the two satellites 

and the different distances of the reflecting surface to the receiver.   

  
Figure 6: Length of the delayed path for PRN3 (red) and PRN31 (black) for different distance d of the 

reflecting vertical plane 

 

For PRN3 the length of the delayed path increases slowly during the experiment. The delayed 

path of PRN31 is varying less for the duration of the experiment, but is larger than the 

delayed path of PRN3. The resulting influence of the multipath on the code and phase 

observations is shown in figure 7 for the L1 frequency and for the L2 frequency in figure 8. 
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Figure 7: C\A-code (top) and L1-phase (bottom) multipath error for PRN3 (red) and PRN31 (black) in 

the simulated scenarios  
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Figure 8: P2-code (top) and L2-phase (bottom) multipath error for PRN3 (red) and PRN31 (black) in 

the simulated scenarios  
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The effect of multipath on the P2 code observations is smaller than the code multipath error 

on the C\A code observations. The L1 and L2 errors are of the same magnitude. 

 

3.3.3 Experimental results 

Table 4 shows the empirical success-rates for dual-epoch processing for phase-only (L1/L2) 

observables and phase+code observables (C\A/L1/P2/L2). The empirical success-rates without 

multipath are 0.9980 for phase-only and 1.0000 for phase+code.  

 

 
Table 4: The empirical phase-only dual-epoch success-rate 

 

The table clearly shows the degradation of the empirical success-rates in the presence of code 

multipath. Even without hardly any code multipath in the case of a distance of the vertical 

plane of 1 meter and α=0.1 (see figures 7 and 8 for the size of the corresponding multipath 

errors) the success-rate of the code+phase solutions are lower than that of the phase-only 

processing. With low reflection values (α=0.1) the ambiguity resolution of the phase-only 

processing is almost insensitive for the multipath errors, where the performances of phase-

only and code+phase are comparable in strong multipath conditions (α=0.9). 

From (3 iii) it is clear that the ’fixed’ baseline coordinates do not only rely on the integer 

ambiguities but also depend on the ’float’ baseline coordinates. In case of correctly solved 

ambiguities the ’fixed’ solution can still be biased due to a large bias in the ’float’ solution. 

Therefore we also looked at the number of correctly fixed baseline components in case the 

ambiguities were fixed correctly. The criterion used for identifying a correct solution of the 

fixed baseline is an error smaller that 1 centimeter in the horizontal components and smaller 

than 2 centimeter in the vertical component. The benchmark values for the baseline length and 

height difference between the two receivers are obtained with a Sokkia Set1X total station. 

These measurements give us reference values for the observed baseline with a precision of 1 

millimeter. Table 5 gives the ratio between the number of epochs with correct baseline 

solutions and the number of epochs with correctly fixed ambiguities.  

The table shows that if the ambiguities are resolved correctly in case of phase-only processing 

it is likely that the fixed baseline components are also correct. The fixed baseline coordinates 

in case of code and phase dual-epoch processing are heavily influenced by the multipath 

errors on the code observations and are generally wrong. This shows that fixing the correct 

ambiguities does not necessarily give the correct solution for the other unknowns. 
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Table 5: The ratio between correctly fixed baseline components and correctly fixed integer 

ambiguities 

 

4. CONCLUSIONS 

In this contribution we studied the epoch-by-epoch or single-epoch RTK-capability of the 

short-baseline GNSS phase-only model, both in the absence and the presence of multipath. 

The performance of short-baseline, phase-only integer ambiguity resolution was shown for 

varying measurement precision, varying observation intervals and for single-, dual- and triple-

frequency data varying the number of tracked satellites. Although single-epoch, phase-only 

ambiguity resolution is impossible, it becomes possible in the dual- and triple-frequency cases 

when six, respectively, five satellites are tracked.  

It was also shown that the phase-only RTK model is more robust against multipath than the 

standard phase+code RTK model. In particular for attenuations up to α=0.5, the phase-only 

success-rates are significantly larger than those of phase+code. Furthermore it was shown that 

in case of correct ambiguity resolution, the phase-only fixed baselines are more reliable than 

their phase+code counterparts.  
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