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SUMMARY  

 

The increasing need for easy and cost effective updating of Geographic Information Systems 

(GIS), the wide availability of inexpensive high resolution data and the exponential increase 

in computing power, fuel extensive research in automatic methods for change detection of 

manmade objects. This paper illustrates a methodology to accomplish such tasks. The main 

idea of the proposed procedure follows the supervised classification paradigm. The first step 

is to layer the available data for the same region in different time periods. Then evaluate a 

number of predefined cues for the whole region and use some manually collected positive and 

negative samples to train a classifier. Finally this classifier can be used to assert change in the 

remaining data. The base data chosen are very high resolution orthoimages and digital surface 

models (DSMs) because they offer both the radiometric and geometric information needed for 

robust change detection. The classifier selected is the support vector machines (SVM) 

algorithm because it offers some significant advantages over alternative methods. These 

advantages include convergence to a global maximum, requirement of a small number of 

training samples and the availability of good open source implementations. In the paper, 

emphasis is given in testing the proposed strategy with simulated data, to access its validity 

and performance aspects. The simulated data were produced automatically with a program 

developed especially for this purpose. Noise is gradually imported to the testing data to make 

them more realistic. Noise can be a combination of random radiometric noise for the images, 

geometric noise for the buildings depicted in the images and finally height noise for the 

DSMs. Different setups were planned and implemented in all of which the results indicate that 

the proposed methodology has good performance. 
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Supervised Change Detection on Simulated Data employing Support Vector 

Machines 

 
Christodoulos PSALTIS, Charalabos IOANNIDIS  

 
1. INTRODUCTION 

 

Automatic change detection in the field of photogrammetry, deals with the dynamic 

phenomenon of land use change at large data scales. Usually the objects which are monitored 

are manmade structures like roads and buildings. This process is necessary for map updating 

which is an otherwise expensive and time consuming task. 

 

Although in its general form the problem of automatic change detection is complex and 

difficult to solve, on well defined applications it is possible to achieve good results by 

imposing certain constraints. Depending on the special needs of an application these 

constraints may vary, thus the available change detection methods in international 

bibliography are many and diverse. However the basic attributes of all these algorithms are 

mainly common and the presented diversity results from different combinations of attribute 

values.  Thus it is best to describe these attributes and how they impact the final method rather 

than overview groups of methods. This analysis is also helpful for designing new methods and 

approaches by making certain decisions in each attribute, based on the application needs. 

 

The following are roughly the most distinctive attributes: 

 Scale of the changes to be detected. This parameter is application depended and greatly 

influences choices in following attributes. Scale of change can be illustrated with a simple 

example. If the user needs to detect changes in the development of the urban area limits 

(Hofmann et al. 2006) then whole groups of buildings can be thought as one and thus the 

data needed to depict this type of change can have small scale. If the user in interested in 

detecting change in single building level, then the data necessary should be of large scale 

in order to better represent the objects of interest and thus this is considered a large scale 

change detection problem (Moeller & Blaschke, 2006). 

 The type of the basic comparison unit. Basic comparison unit is called the feature which is 

compared between two time periods for assertion of change. Its type expresses the 

information level it carries, ranging from low, i.e. grey tone values, to high level 

information, i.e. object classes (Straub et al., 2000). The highest the level of information 

the more robust the method is. At the same time however, it is more difficult to develop 

and maintain. The nature of the basic unit is primarily decided depending on the scale of 

changes to be detected. In particular large scale changes demand more sophisticated 

comparison units. 

 The number of steps in which the process is completed. At this point it is decided if 

changes will be detected in one or two steps. The two step approach involves the extraction 

of objects in both time periods and then the comparison between them to decide what has 

changed (Blaschke, 2005). On the other hand it is possible to complete the same procedure 

in a single step by layering the two time periods in a single new product, i.e. a difference 
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image, and then deciding which features of the new dataset are indicating changes (Psaltis 

& Ioannidis, 2008). Two step approaches have the disadvantage of inserting errors in the 

whole process due to the two extraction phases. Errors even in one phase will lead to errors 

in change detection. On the other hand they are more noise resistant.    

 The path to change detection and incorporation of a priori knowledge. Namely there are 

two basic ways to go for change detection, either bottom-up (Psaltis & Ioannidis, 2008) or 

top-down (Hall, 2003). Bottom-up methods are considered those which by dealing initially 

with raw data lead to change assertion. The opposite is true for top-down approaches 

where certain models of change are searched and matched to the raw data. In both cases it 

is necessary to use some a priori knowledge to bridge the semantic gap between data and 

change model. These data differ in complexity according to the needs of each method, but 

as previously mentioned, higher level knowledge better fits large scale change detection.  

 Deterministic or stochastic approach of the problem. Modeling change can be formulated 

in any one of the aforementioned ways. In the first case there is a decisive answer as to 

what change is (Song & Li, 2007) whereas in the second there is a measure of how 

possible change is (Canty & Nielsen, 2004). Stochastic methods have the advantage of 

providing a concrete quality measure of the results, possibility, and they often are more 

flexible and extensible. On the other hand they are more difficult to develop and often face 

computational challenges.      

 Level of automation. In this attribute one can discern three main approaches; autonomous, 

automatic and semi-automatic methods. In autonomous method the user just imports data 

to the algorithm and gets an output without any further customizations (Canty & Nielsen, 

2004). In automatic methods, users have to manually tune a set of parameters before they 

get the desired output (Wang et al., 2007). In semi-automatic methods users complete a 

training phase inputting positive and negative samples of change before the algorithm is 

able to predict changes in the rest of the dataset (Mo et al., 2008). Higher levels of 

automation mean less effort from the users, but usually they also mean lower levels of 

accuracy and less noise tolerance.     

 Type of data used. This selection depends mainly on the application scenario and the scale 

of the changes to be detected. Today there is a wide range of data type available in many 

scales and with different characteristics. Data can be divided in two major categories raster 

and vector. Raster data mainly include images from different types of sensors like airborne 

or spaceborne cameras, SAR sensors and thermal sensors (Zhigao et al., 2006). Vector data 

mainly include maps, cadastral polygons, 3D point clouds and surface models (Song & 

Deren, 2007). Choosing the most appropriate type of data is impossible in some cases since 

for certain periods and areas there might be only certain types available. For this reason it 

is important to take into account this parameter before developing a change detection 

algorithm. However, with the gradual increase in data format availability this aspect will 

influence less the development process.   

 

Based on the above analysis and the existing knowledge and experience on change detection 

techniques, a new automated method for buildings change detection is proposed; the 

procedure is developed and its results derived from a broad variety of simulation data are 

presented in this paper. 
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2. PROPOSED APPROACH FOR AUTOMATIC CHANGE DETECTION  

 

The proposed method, in accordance with the aforementioned general attributes, is designed 

to detect changes in large scales - single building scale. The employed data are orthoimages 

and digital surface models (DSMs) of the area of interest. The orthoimages offer a good 

starting point, since they combine reduced radiometric and geometric noise, while at the same 

time offer large information context. To produce the orthoimages it is necessary to have a 

DSM available. The DSM provides direct geometric information which can augment the 

detection capabilities of the method. The basic comparison unit is mid level statistics, in order 

to keep the process simple yet as robust as possible. Detection is completed in a single step, to 

avoid building extraction in every time period. This choice minimizes the development work 

and helps to avoid errors introduced from the two stage approach. The method is deterministic 

and the role of assessing the quality of the results is assigned to a human user investing 

minimal effort. It is a bottom-up technique, because orthοimage creation significantly reduces 

noise and makes the development of a complex top-down approach unnecessary. It is semi-

automatic so the final results are expected to be better than the fully automatic approach. The 

selected classifier is the Radial Basis Function Support Vector Machine (SVM). SVMs are 

reported to fit well in change detection scenarios (Zhigao et al., 2006; Mo et al., 2008) and 

they offer a number of significant advantages described later on. 

 

The proposed workflow of the method was organized to satisfy the above characteristics, as 

following: 

1. Acquisition of large scale images from different time periods for an area of interest. If the 

DSM is going to be produced, then image stereopairs are needed. Otherwise the DSM for 

each time period is also acquired from an external source. 

2. Interior and exterior orientation of the images in the same reference system. The DSMs 

should also be in this reference system. 

3. Production of orthoimages for each period; to reduce geometric noise and improve image 

correspondences. 

4. Layering of the orthoimages and the DSMs and calculation of the appropriate feature 

vectors. 

5. Manual labeling of some positive and negative samples of changes to train the classifier, 

which was selected to be a Support Vector Machine (SVM). 

6. Input all new data to the trained SVM in order to classify them as changed or not. 

7. Manual assessment of the resulted changes. 

 

3. SUPPORT VECTOR MACHINES 

 

The theoretical foundations of SVMs were set in the 60’s mainly with the efforts of V. Vapnik 

(Vapnik and Lerner, 1963), but it was not until 1992 that they reached their modern 

formulation (Boser et al., 1992). Today SVMs are used in a wide range of applications from 

text recognition to image analysis because of their generic nature and the positive tradeoff 

between advantages and disadvantages (Abe, 2005).  

 

 



TS 7D - LIDAR and InSAR Usage in Surveying 

Christodoulos Psaltis, Charalabos Ioannidis 

Supervised Change Detection on Simulated Data employing Support Vector Machines 

 

FIG Congress 2010 

Facing the Challenges – Building the Capacity 

Sydney, Australia, 11-16 April 2010 

5/18 

3.1 Formalization of the linear SVM classifier 

 

The goal of the support vector machine is to classify a given object to one of two available 

classes based on its characteristics. Each object in this case is viewed as an n-dimensional 

vector. The basic idea behind the support vector machines is to calculate an n-1 dimensional 

hyperplane which best separates the two object classes from a set of already labeled objects. 

The two sample sets can be separated with a number of hyperplanes. The best solution is the 

hyperplane from which the distance to the nearest feature vector on each side is maximized. 

New objects can then be classified depending on which side of the hyperplane they lay. This 

is the most basic case of support vector machines and it is called linear classifier (Figure 1). 

 

 
Figure 1. Linear classification example (Burges, 1998) 

 

To formulate the above in mathematical terms suppose we have L training points, where each 

input xi has D attributes, dimensionality D, and belongs in one of two classes yi = -1 or +1. 

Our training data then are of the form {xi, yi} where i = 1…L and yi in {−1, 1}. Here it must 

be assumed that the data is linearly separable so that we can draw a line on a graph of x1 vs 

x2 separating the two classes when D = 2 and a hyperplane on graphs of x1, x2 . . . xD for 

when D > 2. This hyperplane can be described by w · x + b = 0 where w is normal to the 

hyperplane and b/||w|| is the perpendicular distance from the hyperplane to the origin. Support 

Vectors are the examples closest to the separating hyperplane and the aim of SVM is to 

orientate this hyperplane in such a way as to be as far as possible from the closest members of 

both classes.  

 

In practice implementing a SVM means selecting the variables w and b so that training data 

can be described by: 

xi · w + b ≥ +1 for yi = +1 

xi · w + b ≤ −1 for yi = −1 

These equations can be combined into: yi(xi · w + b) − 1 ≥ 0 

 

Considering the points that lie closest to the separating hyperplane, the two planes H1 and H2 

that these points lie on can be described by: 

xi · w + b = +1 for H1 

xi · w + b = −1 for H2 
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Let d1 be the distance from H1 to the hyperplane and d2 the respective distance from H2. The 

hyperplane’s equidistance from H1 and H2 means that d1 = d2, a quantity known as the 

SVM’s margin. In order to orientate the hyperplane to be as far from the Support Vectors as 

possible, we need to maximize this margin. Simple vector geometry shows that the margin is 

equal to 1/||w|| and maximizing it is equivalent to finding:  

Min||w|| such that yi(xi · w + b) − 1 ≥ 0  

 

3.2 Kernel functions 

 

The above case works well when the samples are linearly separable in N-dimensional feature 

space, but this constraint is not always true (Figure 2). In cases where the samples are 

separated by a nonlinear curve there are two possible solutions; either to fit a nonlinear curve 

or to increase the dimensionality of feature space until they become linearly separated. The 

first possibility is complex and computationally exhausting whereas, due to data restrictions, 

you might not be able to increase the dimensionality of feature space to the desired point. To 

cope with this problem the proposed solution is kernel functions.  

 

 
Figure 2. Non-linear hyperplane (DTREG, 2009) 

 

Kernel functions map the data into a high dimensional space where it is possible to perform 

the separation. Kernel functions enable operations in the feature space without computing the 

coordinates of the data in that space, but rather by simply computing the inner products 

between the images of all pairs of data. In fact SVMs are a subclass of kernel methods. 

 

There are almost infinite possibilities in creating a kernel function, but only a few are proved 

to work well in a number of situations. These include the linear kernel, the polynomial kernel 

and the radial basis function kernel. The linear kernel is equivalent to the linear classifier 

presented above. The polynomial kernel separates the samples with a polynomial curve, while 

the radial basis function kernel creates a separating curve around the samples. For detailed 

mathematical formulation of these kernels and some more refer to Christianini & Taylor 

(2005). To illustrate the difference between them see Figure 3. 
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Figure 3. Left: Linear SVM classification. Middle:  Polynomial kernel SVM classification. Right: Radial Basis 

Function SVM classification (source: DTREG, 2009) 

 

4. SIMULATING DATA 

 

To test the validity, effectiveness and robustness of the strategy, it was decided to simulate 

some datasets and employ the proposed technique to classify them. At the same time this 

testing can provide further information to improve the final strategy in terms of selected 

features, feature space dimensionality and SVM parameter tuning. Because the process of 

creating simulated datasets is time consuming a computer program was developed especially 

for this purpose. The programming language used was Python and especially the Python(x,y) 

distribution. Python(x, y) includes the current python release plus a set of tools and libraries 

especially designed for scientific computing (Raybaut, 2009). 

 

The designed program has two basic outputs; greyscale simulations of orthoimages and 

simulated DSMs for the same area of interest at two different time periods. For a granular 

control over the final result the user has a number of available choices: 

 The size of the testing area. The user sets this parameter denoting the width and height of 

an orthogonal area of interest in pixels. 

 The area of each building in pixels. Every building in the data set will have approximately 

the same area. The area will not be exactly the same because of the shape parameter that 

follows. 

 The possible shapes of buildings. Users can input a list of possible shapes their buildings 

might have. Before creating each building it is randomly decided what shape it will have 

and then based on its area it is placed on the final image. At this point the program is able 

to draw only orthogonal shapes with arbitrary ratio between their sides. 

 The total number of buildings to be presented in the newer time period. This parameter is 

used to make building distribution more dense or arid depending on the preferences of the 

user. 

 The percentage of changes from the old period to the new one. Supposing that the user 

requested 200 building in the latest period and a 25% change percentage, the earlier period 

will depict 150 buildings, thus 50 new buildings have emerged. 

 Distribution of buildings in the area of interest. There are two types of distribution 

supported by the simulation program; grid and random. The grid selection places the 
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buildings in the nodes of intersecting cells. The number and size of the cells depends on 

the total area of interest and the number of the buildings. The random choice places the 

buildings in arbitrary positions, thus they may overlap resulting to more complex shapes. 

 Uniform slope of the DTM. The user can define a slope percentage for the DTM on which 

later the buildings are added to form the DSM. 

 Building height. This parameter sets a standard building height for all buildings in the area 

of interest. The buildings’ roof is considered flat. The polygon of each building is layered 

on the DTM and then it is elevated by this parameter and added to the initial DTM to form 

the DSM. To keep the roofs flat and not follow the slope of the DTM, the centroid of the 

building polygon is elevated first and then all the DTM pixels belonging to that building 

are elevated to that height.     

 Radiometric noise. The user is able to set the mean value and standard deviation of a 

normal distribution from which noise is applied to the images. 

 Geometric noise. This parameter can add a uniform geometric noise to the new image in 

terms of moving a buildings along the x,y axes, rotating it and scaling it with respect to x 

and y axes. 

 DSM noise. Here the user can define the mean value and standard deviation of a normal 

distribution of noise to be added to the DSM. 

 

To better illustrate the simulating procedure there is a step by step description of the 

program’s execution: 

1. An image for the area of interest is created with the dimensions indicated by the user. The 

color of the image at this point is black. 

2. The initial DTM is created based on the given slope in raster format. Each pixel of the 

DTM corresponds to a single pixel of the initial image. 

3. Depending on the selected distribution of buildings, the algorithm generates the centers of 

each building in the new time period. 

4. Given the centers, randomly taking values from the shape list and based on the area of 

each building, the program calculates the coordinates of the corners of each building with 

an arbitrary rotation. These values are stored in a container object. 

5. The container is copied and depending on the percentage of change some of these 

polygons are erased to create the set of buildings for the old time period. 

6. The polygons of the new buildings are transformed according to the geometric noise 

selected. 

7. The polygons of each period are then drawn of the respective images. The buildings have 

white outline and white fill. 

8. The polygons of each period are superimposed to the DTM and the DSMs are created by 

elevating building regions of the DTM by the building height selected. 

9. Two difference products are created. The first is the image difference and the second the 

DSM difference. In both cases the old period is differentiated from the new one. 

10. Radiometric noise is added to the image difference. This procedure can have one or two 

steps depending on the needs of the user. In the one step approach the noise generated is 

simply added to the image. This results in a noisy background, but the white regions 

remain white because white has the maximum allowed grey tone value and whatever you 

add to it remains white. To cope with this effect and add noise to the white polygons as 
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well, it is needed to follow a two step approach. First you add noise as explained before 

and then you subtract a different noise distribution. This way the background remains 

noisy and the white polygons get their own amount of noise. 

11. The last step is to add noise to the DSM difference. This is achieved by creating a noise 

distribution according to user provided parameters and add it to the difference DSM. 

 

5. TESTING PROCEDURE 

 

This chapter describes the procedure of testing the proposed strategy with simulated data. For 

each test run two datasets are created; the first one is used to train the SVM and the second to 

test its classification performance. To validate the quality of the training the first set is also 

inputted to the trained SVM. Both sets have the same characteristics in terms of area size and 

average size of buildings, but the noise parameters may differ as seems fit.  

 

The first step of the procedure is to divide the area in cells of the same size. This size is 

designated by the average size of each building. It is automatically set to have half the area 

size of each building. This choice was made in order to secure that a large part of each 

building will be in a cell. Then for each cell, in each dataset, the algorithm calculates the 

respective feature vectors from the difference image and the difference DSM. The feature 

vector may include the mean and standard deviation of gray tone values, from the difference 

images, and the mean and standard deviation values of heights, from the difference DSMs. 

The difference data at this point include all the user defined noise.  

 

The next step is to label which cells in each dataset contain changes and mark them as ground 

truth. To do that automatically, the difference data are used without any radiometric noise. 

This way all changes have white color. An algorithm runs through the cells and by calculating 

the mean value of each one decides if the cell contains change. The mean value threshold is 

set to 140, so for a cell to be considered as changed it must contain about 55% of changed 

pixels. This threshold ensures that there are enough changed pixels in a cell to calculate 

reliable feature vectors for changes.  

 

After labeling the SVM is trained and tested. Testing includes both the training set and the test 

set. For the SVM related operations the library used is libsvm. Libsvm is an open source high 

end library for SVMs which is considered a standard for such operations and contains 

precompiled scaling, training and testing tools with a lot of customization options (Chang & 

Lin, 2001). The final results are exported in terms of changed cells. To have the results also at 

object level, the changed cells are plotted to the change images and a user overviews them to 

measure the total success rates. This process can then be repeated with different parameters. 

 

Before presenting the results of some indicative scenarios, there is a brief overview of the 

testing procedure accompanied with examples from data simulation to change assertion. The 

first step is to create the images (Figures 4 and 5) and DSMs, if appropriate, of the area of 

interest. If selected, geometric noise is added to the new image period at this point. 
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Figure 4. Train set, old time period, with random 

building distribution 

 
Figure 5. Train set, new time period, with 

geometric noise 

 

The next step is to produce the difference image (Figure 6) and difference DSM (Figure 8 

left). At this point radiometric noise is added to the image difference (Figure 7) and height 

noise to the difference DSM (Figure 8 right). 

 

 
Figure 6. Train set’s image difference without 

radiometric noise 

 

 
Figure 7. Train set’s image difference with 

radiometric noise 

With the base data ready, the feature vectors are extracted for each set and then the SVM is 

automatically trained. This is followed by the classification of the test and train sets and the 

assessment of the final results (examples are illustrated in Figures 9 and 10). 
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Figure 8. Left: DSM difference without height noise. Right: DSM difference with height noise  

 

 
Figure 9. Overlay of the training cells, red, on the change image without radiometric noise  

  
Figure 10. Overlay of returned cells for the training set (left) and the test set (right), green, on the 

respective change image without radiometric noise 
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6. RESULTS 

 

This chapter presents some indicative results from testing the above described strategy. For 

the tests we simulated an area of interest with profound changes. When the buildings’ 

distribution is set to grid the area contains a total of 99 buildings, 74 of which are old ones. 

When it is set to random, the area contains 100 buildings, 75 of which are old ones. The mean 

area of the buildings, in all distributions, is 200 pixels. The buildings’ shape is orthogonal and 

the aspect ratio of their sides is determined randomly. The allowed ratios are 1/1, 16/9 and 

4/3. Each building is rotated arbitrarily around its center of mass. The imposed rotation is 

between 0 and 180 degrees. The area of interest is depicted in 1100x1000 pixel images. 

Whenever a DSM is used, the slope of the original DTM is set to 10% and the average height 

of each building is set to 4m. The size of the cells to extract features from is 10x10 pixels and 

all the feature values are scaled to the [-1,1] range. The SVM RBF is used for classification in 

all the scenarios.     

 

In the following testing scenarios the authors tried out different buildings’ distributions, they 

used images or images and DSMs as data and enforced different types of noise with varying 

magnitude. In each scenario one train set and one test set are created. Both sets are labeled 

automatically with the process described in the previous chapter. The SVM is trained on the 

first one and then classifies the second. Finally, to assess the validity of training, the SVM is 

also used to classify the train set. 

 

To assess the final results the following are measured: 

 accuracy at object level, how many buildings were correctly detected over the actual truth. 

 True positive, true negative, false positive and false negative returns at cell level. 

There are two types of assessments because the method itself cannot connect in some way 

cells to objects. Thus a changed building may be represented, and usually is, by more than one 

changed cells. The role of connecting cells to actual objects is left for the user. User tasks in 

this case are supported from special imaging products depicting changed cells returned from 

the algorithm over the noise free difference image. 

 

6.1 Classifying images with radiometric and geometric noise 

 

The first family of test scenarios include different cases of image only data, with geometric 

and radiometric noise, grid and random distributions of buildings. In every scenario of the 

Table 1 the geometric noise is fixed to the following values: 

 1 pixel displacement along the x axis and 2 along y axis 

 18 degrees of counter-clock wise rotation 

 +10% scale along x axis and +20% along y axis. 

 

The above values are more than those expected in real life situations, but are very helpful to 

assess the robustness of the method. Radiometric noise varies and it is added to the difference 

image. The training and testing sets for each case include exactly the same type of noise. 
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Train Test Train Test Train Test Train Test Train Test Train Test 

Mode Grid Grid Grid Random Random Random 

Old 

buildings 
74 74 74 75 75 75 

New 

buildings 
25 25 25 25 25 25 

Mean 

noise 
100 150 200 100 150 200 

Std noise 50 50 30 50 50 30 

Positives 70 76 77 76 72 76 55 55 55 56 55 53 

Negatives 10930 10924 10923 10924 10928 10924 10945 10945 10945 10944 10945 10947 

True 

Positives 
65 70 71 70 69 70 51 49 53 52 54 51 

True 

Negatives 
10930 10924 10923 10924 10928 10924 10945 10945 10944 10944 10943 10945 

False 

Positives 
0 0 0 0 0 0 0 0 1 0 2 2 

False 

Negatives 
5 6 6 6 3 6 4 6 2 4 1 2 

Object 

accuracy 
25/25 25/25 25/25 25/25 25/25 25/25 25/25 24/25 25/25 25/25 25/25 25/25 

Table 1. Results of test scenarios, including image only data, with geometric and radiometric noise 

 

From the above it is obvious that, at least at cell level accuracy the random distribution of 

buildings poses more challenges. It also evident that geometric and radiometric noise, have no 

significant impact to the results. This is attributed to the fact that white new buildings remain 

white since radiometric noise is only added to the difference image and thus the buildings 

remain white. In terms of objects, in almost all cases the new buildings are successfully 

detected. 

 

6.2 Classifying images and DSMs with two step noise 

 

Following the above, the next phase included testing both with images and DSMs. Only the 

random mode was tested. Geometric noise was kept at the same levels as above, but this time 

radiometric noise was generated in two steps, to make the detection procedure more 

complicated. In the first step a noise distribution is added to the difference image. This makes 

the black background of the image noisy, but keeps the buildings white and noise free. In the 

next step a new noise distribution is generated and then subtracted from the first step result. 

This way both background and buildings get an amount of noise. It is important to generate 

two noise distributions of different standard deviations in order for the second not to alleviate 

the effect of the first one. The preferred choice is first to add a distribution with high mean 

value and low standard deviation and then subtract one with medium mean and high standard 

deviation. With this strategy the background takes initially the approximate color values of 

the buildings and then after the subtraction the scene is almost equally randomized. To assess 
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the impact of the DSM to the classification process the same scenarios are ran with and 

without DSMs. Finally, to further calculate the impact of DSM quality to the results the DSM 

is first left without noise and then a noise distribution of zero mean value and 1m standard 

deviation is added to it. 

 

 

Scenario 7 Scenario 8 

Images 
Images, 

DSMs 

Images, 

DSMs 
Images 

Images, 

DSMs 

Images, 

DSMs 

Train Test Train Test Train Test Train Test Train Test Train Test 

Old 

buildings 
75 75 

New 

buildings 
25 25 

Mean 

noise 1 
180 200 

Std noise 1 10 10 

Mean 

noise 2 
100 100 

Std noise 2 60 60 

Mean height 

noise 
- - - - 0 0 - - - - 0 0 

Std height 

noise 
- - - - 1 1 - - - - 1 1 

Positives 58 56 58 56 58 56 59 55 59 55 59 55 

Negatives 10942 10944 10942 10944 10942 10944 10941 10945 10941 10945 10941 10945 

True 

Positives 
50 41 56 52 53 47 50 37 57 50 53 44 

True 

Negatives 
10941 10942 10942 10943 10941 10943 10939 10942 10939 10940 10935 10934 

False 

Positives 
1 2 0 1 1 1 2 3 1 2 1 2 

False 

Negatives 
8 15 2 4 5 9 9 18 2 5 6 11 

Object 

accuracy 
23/25 21/25 25/25 24/25 24/25 23/25 22/25 20/25 24/25 24/25 23/25 23/25 

Table 2. Results of test scenarios including both images and DSMs, with geometric and radiometric noise 

 

The results of this phase (Table 2) show three important pointers: (a) The two step radiometric 

noise significantly reduces the accuracy of the process, (b) Considering the DSM in the 

classification process improves the results (in terms of objects, the successfully detected new 

buildings are more than 90%), and (c) The DSM quality is proportional to the final accuracy. 

 

6.3 Classifying images and DSMs with low noise training and high noise testing data  

 

To make testing more realistic it was considered that in certain cases training data and the 

data to be classified differ in quality. To assess this possibility the training data generated 

were set to have low noise and the data to be classified were set to have higher noise index. 
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These scenarios were evaluated once taking into account only the images and then adding the 

DSM as well. The DSM had varying quality whereas the images had a fixed quality. 

 

 Scenario 9 Scenario 10 

 Images Images, DSMs Images Images, DSMs 

 Train Test Train Test Train Test Train Test 

Old buildings 100 100 

New buildings 25 25 

x displacement 1 pixel 1 pixel 1 pixel 1 pixel 1 pixel 1 pixel 1 pixel 1 pixel 

y displacement 1 pixel 2 pixel 1 pixel 2 pixel 1 pixel 2 pixel 1 pixel 2 pixel 

Rotation 9 deg 18 deg 9 deg 18 deg 9 deg 18 deg 9 deg 18 deg 

x scale +5% +10% +5% +10% +5% +10% +5% +10% 

y scale +5% +20% +5% +20% +5% +20% +5% +20% 

Loc 180 200 180 200 180 200 180 200 

Scale 10 10 10 10 10 10 10 10 

Loc2 100 100 100 100 100 100 100 100 

Scale2 20 60 20 60 20 60 20 60 

DTM scale - - 0 0 - - 0 0 

DTM loc - - 0.5 1 - - 0.3 0.3 

Positives 45 63 45 63 43 55 43 55 

Negatives 10955 10937 10955 10937 10957 10945 10957 10945 

True Positives 44 24 44 31 41 15 43 31 

True Negatives 10955 10937 10955 10937 10957 10945 10956 10945 

False Positives 0 0 0 0 0 0 1 0 

False Negatives 1 39 1 32 2 40 0 24 

Object accuracy 25/25 18/25 25/25 20/25 25/25 17/25 25/25 21/25 

Table 3. Results of test scenarios with low noise training and high noise testing data 

 

From these scenarios it is also evident the positive impact of DSM and high DSM quality to 

the final result. As it was expected it is very crucial to train and test the SVM in almost the 

same conditions in order to achieve uniform levels of acceptable accuracy. If this is not 

possible then a high quality DSM can greatly enhance the overall performance of the 

algorithm. 

 

7. CONCLUSION 

 

In an effort to improve the procedures for automated and reliable detection of new buildings, 

which can be used for several applications such as map updating, monitoring of informal 

development etc, a procedure using Support Vector Machines was developed and tested. The 

results using the Radical Basis Function SVM classifier are especially encouraging. 
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For the selection of the appropriate parameters for the application of the RBF SVM method 

and the investigation of its impacts on the efficiency of the procedure, the use of simulation 

data is necessary. This is a sophisticated procedure since it is necessary to gradually identify 

realistic conditions for the application in a virtual environment. However, it is proven that the 

procedure is especially useful and efficient with interesting results. A significant number of 

scenarios was tested, the most representative of which are presented in Tables 1-3. The 

derived results are: 

 For cases where simple noise conditions have been applied (even with high radiometric 

noise), the results were excellent. All new buildings were detected and few false replies 

(positive or negative) were mentioned. Consequently, the proposed procedure works 

perfectly under ideal conditions. 

 When the inserted noise becomes complicated (two step noise) the success indicators are 

reduced (e.g., detection of new buildings 80% and 5% false negative responses). The use 

of DSMs seems to be necessary; DSMs of high quality and accuracy give the best results. 

 When training and testing data differ in quality, the difficulties in detection of changes 

grow. It is proven that the use of images alone is no longer adequate (detection of new 

buildings is reduced to less than 70%). The use of DSMs is necessary; the increased quality 

of DSM leads to better results. 

 

Future research should focus on the application of the proposed procedure with real data, 

aerial and satellite images and DSMs of various densities and quality, so that the results 

derived from simulation tests will be ensured. However, it is obvious that this method is 

promising increased percentages of successful detection of new buildings in a broad variety of 

applications. 
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