A New Methodology for an Automatic Evaluation Procedure of Cadastral GNSS Measurements According to the Surveyors' Regulations

Jad Jarroush
Bishara Khell & Zeibak Marwan

Index

• Motivations
 – DOPS values as problematic parameters for validation
 – Regulations Complexity
• MAJOR® software as an automatic effective solution
 – Regulation studio – in process of patent registration...
 – Movie for illustrating the MAJOR procedures...
• Summary
Motivations

• **Digital Cadastre** – grid coordinates as the main prove in the court.

• Cadastral points’ coordinates should be computed in high accuracy level according to the surveyors’ regulations.

• The SOI goal for cadastral boundary point coordinates – **5 cm in 95%**

Motivations

• The *surveyors’ regulations* instructions might be complex for achieving this pedant goal.

• When licensing cadastral measurements: Surveyor has to deal with the boundary point similar to control point.

• RTK GNSS technology be the T.S of the future.

• Survey agency will suffer from **huge number** of GNSS cadastral projects for licensing.
Motivations

• The **waiting time** for licensing process will be **long** than usual...

• The surveyor might have his **report** after long time with **failed results**.

• Reasons for failing licensing points may be divided into two parts:
 – Low quality of GNSS observations.
 – Poor understanding of the regulations instructions

Motivations

• Most significant factors that affect GNSS observations quality are:
 – **Satellite Constellation** (position and number)

 – Signals Quality: **noises** around the GNSS receivers (SNR)

 – **Distance** between GNSS receivers

 – The location of the receivers: **multi-path** phenomenon
Low unexpected DOPs values

- Most of the survey agency required DOPs values < 5 for accepted GNSS observations.
- Mission planning for the GNSS satellite could help surveyors avoiding period times with low DOPS values:

 Surveyors can also watch their GNSS receiver's DOPS while measuring...

Low unexpected DOPs values

- Are these operations sufficient for good DOPs?
Poor understanding of the regulations instructions

- Complex regulations’ instructions leads to:
 - Uncompleted submission data,
 - Incorrect computations...
 - Insufficient consideration for the instructions

Surveyor prepare the final report for submission

Survey agency Validate the report
MAJOR

An Automatic Effective Solution Software

- **Major** is designed for helping:
 - Surveyors:
 - For quick preparation of GNSS measurements project final reports for submission against regulations...
 - Minimizing the uncertainty of the report validation results.
 - Understanding their regulations.
 - Managing their GNSS projects in geodetic mentality.
 - Survey agency:
 - Minimizing the validation and licensing process time
 - Maximizing the reliability of the validation

Major concept is existed in final patent registration process

Data input

1. Data Input (Processed Vectors, Nash, RTK) CR, PR, PRT, PNR, TRM

Editing data:
Defining points types, known coordinates

2. Edit Input (Point Name, Point Cases, and Control coordinates)

The main algorithm:
Defining your own regulations

3. The main algorithm
 - Calculation Method
 - Weight
 - Adjusting
 - Known Coordinates
 - Coordinates in Your PK System
 - Converting
 - Known Parameters
 - Known Points
 - Known Coordinates
 - Known PK System

Choose your desired method and run report

4. Run the calculation method and generates a detailed Regulation/Report
Example

Israeli VRS method as a study case

• Every New horizontal and vertical control point must be linked to the Active Permanent GNSS station Array

• The example method is one of several methods designated for licensing S1 degree New Horizontal Control points (NHC)

Israeli VRS method as a study case

1. Every NHC point must be measured against two different VRS.

2. Between two measurement sessions:
 - Minimum 60 minutes
 - 5 cm - Antenna height

3. VRS points < 5 km from each NHC.

4. At least one Checker points linked directly to one VRS.

5. The difference between the measured and computed IG2005 coordinates and its licensed coordinated < 4 cm.
Israeli VRS method as a study case

6. The distance of the checker point < 10 km from every NHC.

7. The distance computed from the coordinates’ differences between the two independent VRS sessions of every NHC < 2.5 cm level.

8. The GNSS PDOP single station measurements values for each point < 5 level during minimum 15 continuous minutes.

9. The GNSS PDOP multi-station vector values for each vector in the net < 5 level during minimum 15 continuous minutes.
Summary

- **Major**: automatic computation and validation of the regulations' instructions.

- Several regulations instructions' method exist in the **Major** library.

- **Major** has several automatic cadastral-geodetic-oriented features such as:
 - Automatic weighting method for RTK vectors.
 - Point description
 - Library licensed control points

Summary

- New method could be generated and added to the library - **Major** suitable for all other countries.

- Rinex module could be work as stand alone for validate the GNSS observation directly when getting reports.

- The **Major** is designated for web-base cadastral report automatic management system.

- Integrated work between surveyors and survey agency using **Major**:

 ![Establishment of high accurate and reliable digital cadastral database]
Thank you for your attention...