The Use of GNSS to Monitor the Deflections of a Motorway Viaduct

Gethin ROBERTS, Chris BROWN and Oluropo OGUNDIPE, United Kingdom

Key words: Deformation Monitoring, GPS.

SUMMARY

Research into the use of GPS and GNSS to monitor the deformations and deflections of large suspension bridges, such as the Humber Bridge and Forth Road Bridge, has been ongoing by the authors for over a decade. These bridges have movements of the order of tens of centimetres, to even a couple of metres, and the use of carrier phase GNSS positioning is able to pick up such movements quite easily. Further to this, due to the fact that GNSS receivers output data at rates of typically 10 or 20Hz, with a precise time, it is possible to change the 3D coordinates with corresponding time into the frequency of the movements of the bridge.

This paper focuses on trials that were carried out on a motorway viaduct. A two day assessment and feasibility trial for GPS monitoring of a concrete Viaduct with a main span length of 173.7m was conducted on the 29th and 30th of November 2007. Five dual frequency GPS receivers were attached to the railings on the main span of the bridge at strategic locations and occupied for set durations at different times of the day. The GPS receivers were set to record data at 10Hz and 20Hz, and used light-weight choke ring antennas in order to mitigate multipath.

The paper outlines the configuration of a number of receivers placed on the structure, as well as provisional results, showing the feasibility of GPS for such monitoring.
The Use of GNSS to Monitor the Deflections of a Motorway Viaduct

Gethin ROBERTS, Chris BROWN and Oluropo OGUNDIPE, United Kingdom

1. INTRODUCTION

The use of GPS to monitor the deflection of bridges has been ongoing at the Universities of Nottingham and Brunel for about a decade [Ashkenazi et al, 1996], [Ashkenazi et al, 1997]. The work has focussed on suspension bridges, and usually those whose movements are in the decimetre to metre range, such as the Humber [Brown et al, 1999] and Forth Road Bridges [Roberts et al, 2006a], as well as the London Millennium Bridge that saw magnitudes in the order of centimetres [Roberts et al, 2006b].

The following paper outlines a field test carried out recently on a motorway viaduct in the UK, with a main span length of 173.7m. 5 GPS dual frequency receivers using choke ring antennas were placed at strategic locations upon the bridge, and two reference stations used, located 1.5km away. The data was all post processed in an on the fly manner, before converting it into bridge coordinates and careful analysis.

2. FIELD PROCEDURE

A two day assessment and feasibility trial for GPS monitoring of a concrete Viaduct with a main span length of 173.7m was conducted on the 29th and 30th of November 2007.

Five dual frequency GPS receivers were attached to the railings on the main span of the bridge at strategic locations and occupied for set durations at different times of the day. The GPS receivers were set to record data at 10Hz and 20Hz, and used light-weight choke ring antennas in order to mitigate multipath. Figure 1 shows the locations that were occupied. Point M corresponds to the midpoint of the main river span on the outer rail of the cycle track while point D is at the midpoint on the inner rail. Points A and B are approximately 40m away on either side of point M and point C is approximately 50m on the other side of the support at pier 9.
Figure 1. GPS Antenna Locations on the Viaduct.

Figure 2 illustrates the Google Earth image of the viaduct, illustrating its size and orientation. Figure 3 illustrates the location of 4 of the GPS antennas upon the bridge deck, and Figure 4 illustrates a close up of one of the light-weight choke ring antennas used, attached to the hand rail.

Figure 2. A Google Earth image of the viaduct.
Two GPS reference stations were set up away from the main body of the bridge. One was set up in the adjacent harbour area, which is a secure site where the GPS receiver could be left unattended for some time. The second was set up on a disused granary building in the Avonmouth dock compound, which was located at approximately the same altitude as the bridge antennas, Figure 5.
Data was downloaded to a laptop computer at the end of each day. The other reference receiver served as a backup, in case of any data loss from the main reference receiver. It also served to validate results obtained from the main reference station, allowing the authors to investigate the effect residual tropospheric error due to the altitude differences between the bridge receivers and the reference receiver. The granary site was not used as the main reference station as it is thought that the granary building would move due to solar expansion throughout the day.

A combination of Leica System 500 and System 1200 receivers were used for the trial, both at the reference stations and on the viaduct. The system 1200 receivers are able to collect data at a maximum rate of 20Hz while the System 500 receivers are able to collect data at a maximum rate of 10Hz. The main reference station at the harbour (Ground_Ref) was a System 500 receiver collecting data at 10Hz while Granary_Ref was a system 1200 receiver collecting data at 20Hz.

3. RESULTS
The data collected was post processed using Leica Geo-Office. This produced an epoch by epoch solution in the GPS WGS84 coordinate system. This was then converted to Ordnance Survey (OS) National Grid Coordinates using the software Grid Inquest.

In order to visualise the positions within the local context of the viaduct, the eastings and northings were then converted to a local coordinate system or the Bridge Coordinate System (BCS) whose lateral axis is across the width of the bridge and its longitudinal axis is along the length of the bridge.
\[
\begin{pmatrix}
\text{Lat.} \\
\text{Long.} \\
\text{Vert.}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
E \\
N \\
H
\end{pmatrix}
\]

\[0 = \text{Azimuth of Viaduct} = 35^\circ08'54''\]

Figure 6. Rotation of OS National Grid to Bridge Coordinate System (BCS)

Figure 7 illustrates the 3D movements of the midpoint on the bridge on day 2 over a 7 ½ hour period. The data shown has had a moving average filter passed through it with a 10s filtering average.

Figure 7. Midspan movements during day 2, with a 10s moving average filter applied.

The 10 seconds filtered data from all the receivers along the profile of the viaduct are shown together in Figure 8. The data from the second reference station on the granary building processed relative to the main reference station is also included in the graphs. The data from the granary was included in order to compare the bridge results with that of a relatively static point. The data for receivers A, M and C have been offset by +0.100m, +0.050m and -0.050m.
respectively. The data for the granary receiver was offset by -0.130m. It is evident from these results that the bridge’s GPS results show larger movements than the granary. This helps to distinguish the movement and apparent movement due to the satellite geometry induced errors and residual tropospheric errors.

Bridge movements need to be identified and differentiated from variations caused by changes in the satellite constellation, errors from the reference and other error sources such as multipath and the effect of the troposphere. This is a focus of ongoing research.

The effect of the troposphere has to a large extent been mitigated by using a short base-line in the order of 1-2km between the reference and the receivers on the bridge. For distances less than 10km the troposphere at the reference and rover sites are similar and by using the differential algorithm most of this error is removed. Having another reference station at a similar height to the bridge also helped to check that there was no effect of relative tropospheric delay due to height difference.

Figure 9 illustrates the Eastings, Northing and Height deflections over a period of time for the granary (left) and midpoint (right). Again, it is evident that the bridge’s movements are indeed greater than the granary’s. However, not all this apparent movement is real, and Figure 9 illustrates the magnitude of noise experienced at the stationary granary site. This is most likely due to troposphere, satellite geometry and some multipath at the reference sites.
Comparing the eastings, northings and heights of position M and B on the bridge with that of the granary at the same time period showed that the magnitude of the bridge movement are much larger than that of the granary. Also the position variation for position M and B on the bridge are similar while to a large extent that of the granary is different. However in the height component between 14:45 and 14:55 though the variation in the granary heights are much smaller, it has a similar dip pattern to that on the bridge. This suggests that any common pattern in the positions due to the variation in the satellite constellation is limited.

4. CONCLUSION

GPS is a viable measurement tool in the viaduct environment. Adequate number of satellites required for positioning were visible both on the viaduct and at the reference station sites. Both sites were affected to a limited degree by multipath. Multipath filtering techniques...
developed at Nottingham could be used to reduce these. This however did not hinder the capability of the GPS to detect the bridge motion. Three main frequencies were clearly detected by the GPS in the vertical component. The previously known frequency of 0.5 Hz was identified as well as two other frequencies. The first frequency in the range of 0.056 – 0.088Hz (corresponding to a period of 17.8s – 11.4s) seem to vary in its peak value.

In terms of the receiver location, at the midpoint both on the outer rail (position M) and on the inner rail (position D), the three main frequencies where detectable. However, looking at the raw position data from the inner rail there are sharp spikes in the data, this is likely to be as a result of momentary passage of high-sided vehicles causing interference in the GPS signal for just an instant. The inner rail may not be the best location for the GPS antenna.

The report shows that mean movements of ±10mm in the lateral, longitudinal and vertical direction were evident, which could be due to diurnal effects.

The report also shows that the peak deflections in the vertical can lie anywhere up to the order of 50mm.

ACKNOWLEDGMENTS

The authors are grateful for InterRoute for funding this research.

REFERENCES

BIOGRAPHICAL NOTES

Gethin Roberts is an Associate Professor and Reader in Geospatial Engineering at the University of Nottingham. He is chairman of the FIG’s Working Group 6.4, and chair elect of Commission 6. He is a member of the UK’s Institution of Civil Engineering Surveyors, and also the UK’s Commission 6 delegate.
Chris Brown is a Reader in Applied Mechanics at Brunel University West London. His research interests include monitoring long span bridges and using Finite Element Models.

Oluropo Ogundipe is a research fellow at the University of Nottingham. Her work focuses on engineering surveying.

CONTACTS

Dr Gethin Roberts
IESSG
The University of Nottingham
University Park
Nottingham
NG7 2RD
UK
Tel +44 115 9513933
Fax +44 115 9513881
Email gethin.roberts@nottingham.ac.uk