USE OF GIS FOR ESTIMATION OF AGRICULTURAL SUITABILITY OF THE LANDS

Integrating Generations FIG Working Week 2008 Stockholm, Sweden 14-19 June 2008 TS 8H - GIS in Environmental Management Presenter: Alexey Olshevsky PhD student Belarusian State University

INTRODUCTION

LAND MANAGEMENT SITUATION IN BELARUS

• Transition to market relations

- More than half of land fund is involved in an agricultural production
- Modern priority is creation of sustainable and effective land use

PROBLEM

Long years the land was considered only as the main means of production:

- increasing of the agricultural areas
- forming of large open land parcels
- using of powerful agricultural machinery

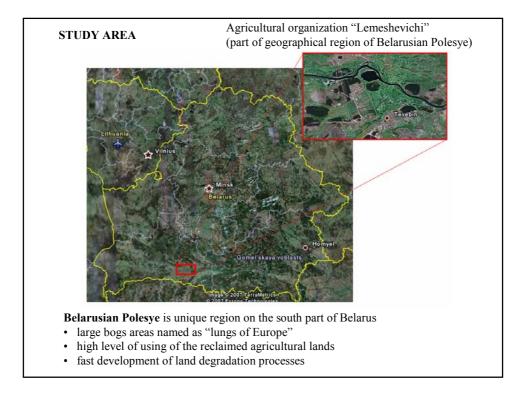
RESULTS

• irrational land use (discrepancy of economic activities to natural, social and ecological conditions of concrete territories)

- simplification of landscape structures
- reduction of soil fertility
- pollution of the lands
- water deterioration
- development of erosive processes

RESEARCH PROBLEM AND OBJECTIVES

Land use optimization of agrarian areas is a very important problem in Belarus and the main research question is how to do it most effectively


The complex estimation and the spatial analysis of all landscape factors influencing agrarian land use is necessary for solving this problem

THE MAIN OBJECTIVE OF RESEARCH

to develop offers on optimization of agrarian land use of study area on the basis of the complex analysis of landscape factors of territory with application of GIS-technologies

RESEARCH TASKS

to analyse the landscape factors influencing agrarian land use of study area
to define the land suitability for agricultural activity
to develop offers on optimization of land use

DATA

- Land information system (LIS) of Pinsky district
- Topographical map, 1:10000
- Aerial images, 1:10000
- Soil map, 1:10000
- Agro-chemical data about soils

SOFTWARE

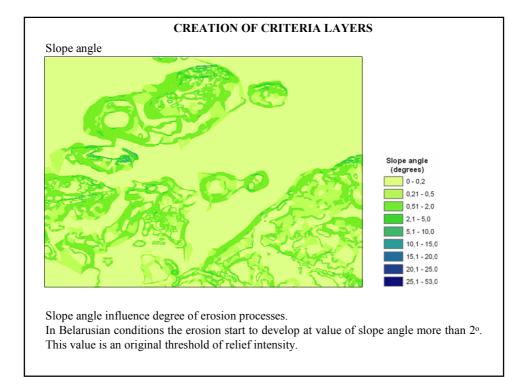
- ArcGIS v.9.2
- ArcView v.3.2
- HydroTools v.1.0

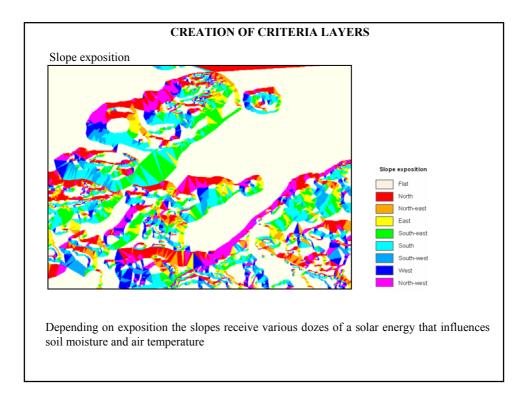
METHODOLOGY

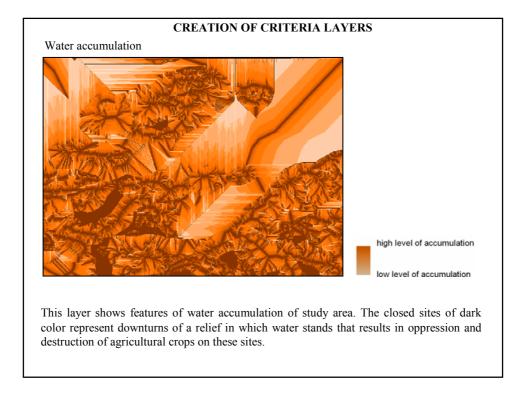
- Use of GIS
- Multi-criteria evaluation (development of optimal model of land suitability)

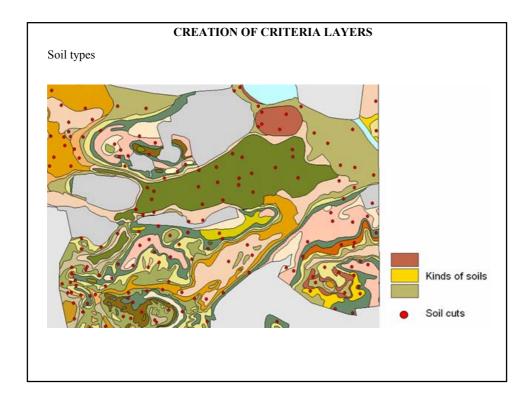
BASIC STEPS

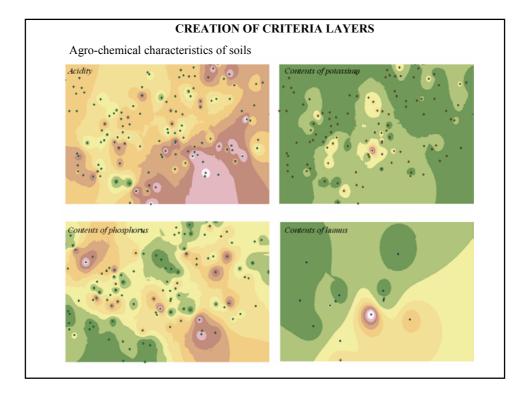
- Creation of criteria layers
- Definition of suitability of criteria
- Layers reclassification
- Calculation of criteria weights (Analytical Hierarchy Process)
- Weighted overlay of layers
- Comparison of received model of suitability with actual land use

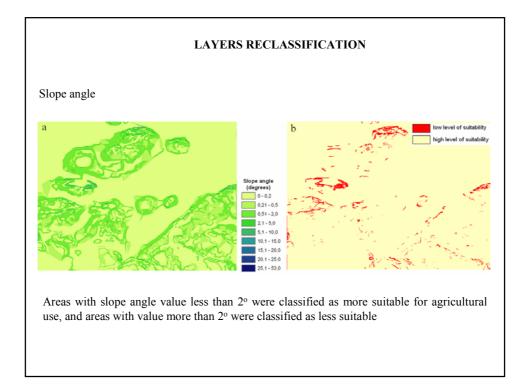

CRITERIA DEFINITION

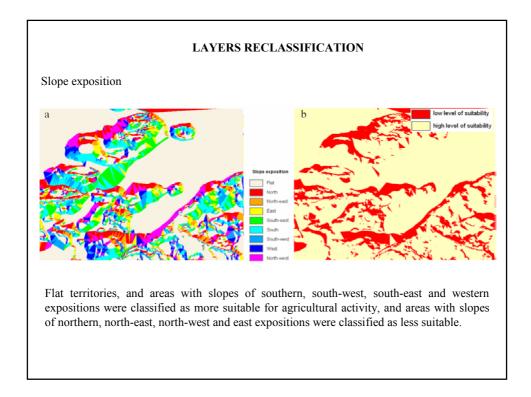

Landscape factors influencing agrarian land use: •climate •relief •soils

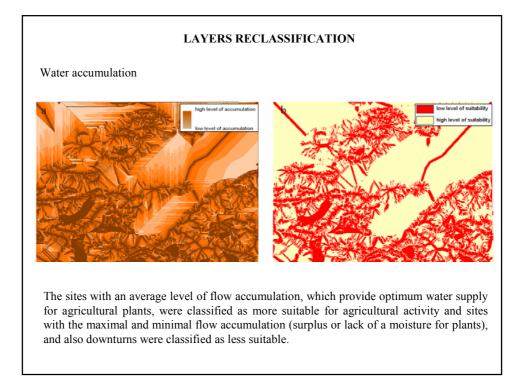

The climate determines temperature conditions and forms water mode of the lands. However on the level of agricultural organization we can only speak about microclimate which is mainly determined by relief of territory.

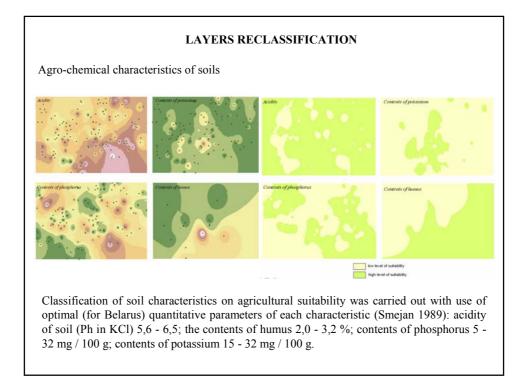

The relief is responsible for redistribution of heat and a moisture. At its analysis for the purposes of optimization of agrarian land use it is necessary to take into account slope angle, slope exposition, features of water accumulation and other characteristics.

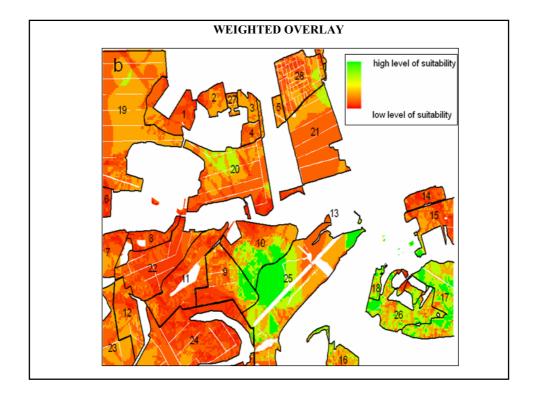

The most important factor influencing agrarian land use is the soil cover. At the analysis of soils it is necessary to take into account soil type, agro-chemical quality, structure and other qualitative characteristics.











CALCULATION OF CRITERIA WEIGHTS											
(Analytical Hierarchy Process)											
	Step I										
AHP steps:	Factors	SA	SE	FA	KS	Hum	Pot	Ph	Acid		
-	Slope angle (SA)	1	2	2	0,25	0,25	2	2	2		
	Slope exposition (SE)	0,5	1	2	0,25	0,25	2	2	2		
I) calculate the sum of	Flow accumulation (FA)	0,5	0,5	1	0,25	0,25	2	2	2		
the values in each column	Kinds of soils (KS)	4	4	4	1	2	2	2	2		
	Contents of humus (Hum)	4	4	4	0,5	1	2	2	2		
of the pair wise	Contents of potassium (Pot)	0,5	0,5	0,5	0,5	0,5	1	0,5	0,5		
comparison matrix	Contents of phosphoru (Ph)	0,5	0,5	0,5	0,5	0,5	2	1	0,5		
	Soil acidity (Acid)	0,5	0,5	0,5	0,5	0,5	2	2	1		
	Sum	11,5	13	14,5	3,75	5,25	15	13,5	12		
II) divide each element	Step II										
ii) uivide each element	Factors	SA	SE	FA	KS	Hum	Pot	Ph	Acid		
in the matrix by its	Slope angle (SA)	0,087	0,154	0,138	0,067	0,048	0,133	0,148	0,167		
column sum	Slope exposition (SE)	0,043	0,077	0,138	0,067	0,048	0,133	0,148	0,167		
	Flow accumulation (FA)	0,043	0,038	0,069	0,067	0,048	0,133	0,148	0,167		
	Kinds of soils (KS)	0,348	0,308	0,276	0,267	0,381	0,133	0,148	0,167		
III) somersta dha	Contents of humus (Hum)	0,348	0,308	0,276	0,133	0,190	0,133	0,148	0,167		
III) compute the	Contents of potassium (Pot)	0,043	0,038	0,034	0,133	0,095	0,067	0,037	0,042		
average of the elements in	Contents of phosphorus (Ph)	0,043	0,038	0,034	0,133	0,095	0,133	0,074	0,042		
-	Soil acidity (Acid)	0,043	0,038	0,034	0,133	0,095	0,133	0,148	0,083		
each row of the	Sum	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
normalized matrix	Step III										
nonnanie va niavini	Factors	Weight									
	Slope angle (SA)	(0,08	(0.087+0.154+0.138+0.067+0.048+0.133+0.148+0.167)/8 = 0.118								
	Slope exposition (SE)	be exposition (SE) (0,043+0,077+0,138+0,067+0,048+0,133+0,148+0,167)/8 = 0,103									
	Flow accumulation (FA)										
	Kinds of soils (KS)	(0,348+0,308+0,276+0,267+0,381+0,133+0,148+0,167)/8 = 0,253									
	Contents of humus (Hum)	(0,34	(0,348+0,308+0,276+0,133+0.190+0,133+0,148+0,167)/8 = 0,213								
	Contents of potassium (Pot)	(0,043+0,038+0,034+0,133+0,095+0,067+0,037+0,042)/8 = 0,061									
	Contents of phosphorus (Ph)	(0,04	(0,043+0,038+0,034+0,133+0,095+0,133+0,074+0,042)/8 = 0,074						0,074		
	Soil acidity (Acid)	(0,04	(0,043+0,038+0,034+0,133+0,095+0,133+0,148+0,083)/8 = 0,089						0,089		
	Sum		-			-			1.000		

COMPARISON									
	Number on the map*	Actual use of the lands	Level of suitability	Offers on the organization of the lands					
	1	Arable	Low	Translation in wood or substantial increase of fertility					
	2	Arable	Below average	Increase of fertilizers					
	4	Arable	Low	Translation in wood or increase of fertility					
EVR STAN	6	Arable	Low	Translation in wood or meadow					
FELE VIEL	7	Arable	Average	Increase of fertility					
	8	Arable	Low	Translation in wood					
	9	Arable	Average	East part without changes, western translation in meadow or wood					
high level of suitability	10	Arable	Above average	Northern part - translation in wood, th rest without changes					
A AMARIAN A	11	Arable	Low	Translation in meadow or wood					
10 Iow level of suitability	12	Arable	Average	Increase of fertility					
	13	Arable	Low	Translation in wood					
	14	Arable	Low	Translation in wood					
And A	19	Meadow	Above average	Part under arable in view of water-securit zones of the rivers and channels					
BON BON	20	Meadow	Average	Northern part under arable					
	21	Meadow	Low	Northern part under long-term plants					
12	25	Meadow	High	Under arable in view of a water-security zone of channels					

DISCUSSIONS AND FUTURE RESEARCH

GIS and MCE can help to spatial planners to optimize land use of the agricultural organization.

Problem: the outcome of multi-criteria analysis first of all depends on the weights of evaluation criteria. The calculation of weights is always the subjective process dependent on features of concrete territory (in different places the criteria have various influence), planner experience, presence of the necessary data for the analysis, choice of multi-criteria decision rules and other conditions.

It is possible to solve this problem with the help of access of all interested groups to land use planning. This will lower subjectivity of process and will allow making the most effective decisions.

The objective of future research is conceptual design and further development of the prototype of web-based application for agrarian land use planning support.

This application will allow the users to communicate with each other, perform the analysis with their set of criteria weights and see the result interactively. And this will help groups of users to form their opinions on the process. Interested parties may access the underlying data and conduct their own analyses using their own assessments of the relative importance of the criteria.

