Introduction and market background

- Mass-market for GPS devices currently dominated by unconnected navigation devices
 - Standalone positioning
 - No access to assisting information improving accuracy and availability
- Handsets having Assisted GPS (AGPS) with an access to assistance information becoming more commonplace
- Michael Halbherr (Vice President, Nokia Location Based Services):
 - Nokia will sell 35M AGPS-enabled handsets in 2008
 - Up to 50% of Nokia’s handsets could be equipped with AGPS in 2010 to 2012
AGNSS (Assisted GNSS) architecture

• AGNSS server either in
 • Public internet
 • Cellular network
• Server distributes data originating from
 • GNSS receivers
 • External services (extended ephemeredes etc.)
• Methods of distribution
 • Control channel of the cellular network
 • User plane (IP-network)
• Examples of assistance elements
 • Ephemerides
 • Ionosphere model
 • Reference location and time
• AGNSS standardized in 3GPP, 3GPP2 and OMA
• The architecture opens the way for advanced assistance data and positioning methods

Assisted GNSS evolution

• Current standards include basic assistance data including broadcast ephemeredes for GPS and Galileo
• Work towards more advanced assistance standards commencing in Open Mobile Alliance
• Single, unique interface for providing handsets with assistance information over IP-networks
• Common Elements are GNSS-independent
 • Reference Location, Atmosphere models
• Generic Elements are GNSS and/or Signal-dependent
 • Navigation models, Differential GNSS
Improvements to conventional GNSS positioning

- Assisted GNSS techniques can improve user experience in terms of speed of position fix and accuracy
- Assisted GNSS obtains position fix typically in 10-20 seconds
 - Reference location, accurate time and navigation models contribute
- High-accuracy navigation model can improve accuracy by several meters. The same can be achieved by DGNSS.
- Assistance may include troposphere delays obtained either from a reference receiver network or weather forecasts
- Ionosphere models (regional maps etc) have the greatest impact
- Extended Ephemeris refers to giving handset navigation models several days ahead – potential user experience improvement due not needing to connect to the assistance server
- Real-Time Kinematics and Precise Point Positioning

Real-Time Kinematics in mobile landscape

- Proposed standards enable high-accuracy relative positioning in two manners: between two handsets OR between a handset and an assistance server
- Bulk of handsets will remain in L1 band for years to come due to high delta cost of dual-frequency receiver – challenge for ambiguity resolution
- Introduction of GLONASS and Galileo in the L1 (E1) band will improve the situation
mobile-RTK : Two options

- Assistance data server has an interface to regional Virtual Reference Receiver - service
- Assistance data server works as a router
 - Establishes data connection between the two terminals

mobile-RTK : Key points

- Carrier Phase measurements readily available in AGNSS handsets
 - Not utilized to full extent yet
- AGNSS is the key enabler
 - Protocols, assistance and infrastructure are already there – data exchange relatively easy to implement on top of the existing items
 - Multiple receivers may also be used (network-approach)
 - Virtual Reference Receiver –services play a major role
- No surveying grade requirements – float solution is already an improvement
- Technology, algorithms etc are there
 - AGNSS provides the way to the mass market applications
mobile-RTK: Use cases

- Accurate navigation
 - Parking
 - Lane guidance
- Friend finder
- Games
 - Geo-caching
- Low-cost solution: possibility to extend professional use cases

Precise Point Positioning in mobile landscape

- The next generation assistance standards will include various items required in PPP
 - Real-time ionosphere and troposphere maps, Earth-Orientation Parameters, precise orbits and clocks...
- Goal: PPP-light
 - Use precise orbit predictions, ionospheric maps
 → These provide the greatest performance improvements in the short term
Conclusions

- Market for AGNSS terminals growing fast
- AGNSS is a very powerful technology in terms of user experience improvement
- Architecture also enables providing terminals with highly advanced assistance data
- The current work in the standardization fora (mainly OMA) aims at gradually bringing the tools currently in professional use to wider audience
 - Enabling new LBS

Thank you!
Lauri.Wirola@nokia.com